Constructing inverse diagrams in (internal models of) HoTT

Josh Chen j.w.w. Nicolai Kraus

University of Nottingham

YaMCATS 29

15 Dec 2022

Background

In plain HoTT, all types A are ∞ -groupoids.

- Objects are elements a: A
- hom(x, y) for n-cells x and y are iterated identity types


```
1-cells p, q: hom(a, b) \equiv (a =_A b),
2-cells \alpha, \beta: hom(p, q) \equiv (p =_{a=b} q),
etc.
```

Background

In plain HoTT, all types A are ∞ -groupoids.

- Objects are elements a: A
- hom(x, y) for n-cells x and y are iterated identity types

Question

How do we talk about (∞ , 1)-categories in plain homotopy type theory?

Background

In plain HoTT, all types A are ∞ -groupoids.

- Objects are elements a: A
- hom(x, y) for n-cells x and y are iterated identity types

Question

How do we talk about (∞ , 1)-categories in plain homotopy type theory

... in a way that exploits HoTT's inherent higher categorical structure?

Simplicial objects in type theory?

Some models of (∞ , 1)-categories start with simplicial objects in some C (= Set, $\hat{\Delta}$, . . .) \implies Look for

- 1. a category C of type theoretic data +
- 2. a construction *defined in HoTT* that can *externally* be seen to give simplicial objects in *C*.

Straightforward first try for (1): universe type ${\cal U}$ is a 1-category

- ► Objects: closed *U*-small types
- ▶ hom(A, B) := function type $A \rightarrow B$

Might call \mathcal{U} -valued Δ -presheaves simplicial types.

Can we achieve (2)? What remains is to define \mathcal{U} -valued Δ -presheaves in HoTT.

First, simplify by forgetting degeneracy maps: ask for the data of \mathcal{U} -valued Δ_+ -presheaves, aka *semisimplicial types*.

Standard encoding of a Δ_+ -presheaf \mathcal{S} in \mathcal{U} :

$$\begin{array}{ll} A_{0} \colon \mathcal{U}, & A_{1} \colon A_{0} \to A_{0} \to \mathcal{U}, \\ A_{2} \colon (x, y, z \colon A_{0}) \to A_{1}(x, y) \to A_{1}(x, z) \to A_{1}(y, z) \to \mathcal{U}, \\ A_{3} \colon (x, y, z, w \colon A_{0}) \to & \\ & (e_{x,y} \colon A_{1}(x, y)) \to \cdots \to (e_{z,w} \colon A_{1}(z, w)) \to & \\ & (f_{x,y,z} \colon A_{2}(x, y, z, e_{x,y}, e_{x,z}, e_{y,z})) \to \cdots \to (f_{y,z,w} \colon A_{2}(y, \ldots, e_{z,w})) \to \mathcal{U}, \\ & \cdots \end{array}$$

 S_n is the *total space* of A_n . Face maps are given by projecting out subtuples.

First, simplify by forgetting degeneracy maps: ask for the data of \mathcal{U} -valued Δ_+ -presheaves, aka *semisimplicial types*.

Standard encoding of a Δ_+ -presheaf \mathcal{S} in \mathcal{U} :

$$\begin{aligned} A_{0}: \mathcal{U}, \quad & \mathcal{S}_{0} = A_{0}, \quad A_{1}: A_{0} \to A_{0} \to \mathcal{U}, \quad & \mathcal{S}_{1} = (x, y : A_{0}) \times A_{1}(x, y) \\ A_{2}: & (x, y, z : A_{0}) \to A_{1}(x, y) \to A_{1}(x, z) \to A_{1}(y, z) \to \mathcal{U}, \\ & \mathcal{S}_{2} = (x, y, z : A_{0}) \times (e_{x,y}: A_{1}(x, y)) \times (e_{x,z}: A_{1}(x, z)) \times (e_{y,z}: A_{1}(y, z)) \times A_{2}(x, y, z, e_{x,y}, e_{x,z}, e_{y,z}), \\ & A_{3}: & (x, y, z, w : A_{0}) \to \\ & & (e_{x,y}: A_{1}(x, y)) \to \cdots \to (e_{z,w}: A_{1}(z, w)) \to \\ & & (f_{x,y,z}: A_{2}(x, y, z, e_{x,y}, e_{x,z}, e_{y,z})) \to \cdots \to (f_{y,z,w}: A_{2}(y, \dots, e_{z,w})) \to \mathcal{U}, \quad \dots \end{aligned}$$

 S_n is the *total space* of A_n . Face maps are given by projecting out subtuples.

Some observations:

- The type of each A_n depends on A_0, \ldots, A_{n-1} .
- For given fixed n, can define the type of tuples (A₀,..., A_n), e.g. fixing n = 2, record SST₂ : Type₁ where A₀ : Type₀ A₁ : A₀ → A₀ → Type₀ A₂ : (x y z : A₀) → A₁ x y → A₁ x z → A₁ y z → Type₀

Question

Define in HoTT a function SST: $\mathbb{N} \to \mathcal{U}^+$ so that SST(n) is the type of sequences (A_0, \ldots, A_n) ?

Some observations:

- The type of each A_n depends on A_0, \ldots, A_{n-1} .
- For given fixed n, can define the type of tuples (A₀,..., A_n), e.g. fixing n = 2, record SST₂ : Type₁ where A₀ : Type₀ A₁ : A₀ → A₀ → Type₀ A₂ : (x y z : A₀) → A₁ x y → A₁ x z → A₁ y z → Type₀

Open Question

"Constructing semisimplicial types"

Define in HoTT a function SST: $\mathbb{N} \to \mathcal{U}^+$ so that SST(n) is the type of sequences (A_0, \ldots, A_n) ?

More generally, is the type of semisimplicial types definable in (plain) HoTT?

Some observations:

- The type of each A_n depends on A_0, \ldots, A_{n-1} .
- For given fixed n, can define the type of tuples (A₀,..., A_n), e.g. fixing n = 2, record SST₂ : Type₁ where A₀ : Type₀ A₁ : A₀ → A₀ → Type₀ A₂ : (x y z : A₀) → A₁ x y → A₁ x z → A₁ y z → Type₀

Open Question

"Constructing semisimplicial types"

Define in HoTT a function SST: $\mathbb{N} \to \mathcal{U}^+$ so that SST(n) is the type of sequences (A_0, \ldots, A_n) ?

More generally, is the type of semisimplicial types definable in (plain) HoTT?

Obstruction: coherence problem because equality in HoTT is structure, not property.

Difficulty: haven't managed to internalize the matching objects of semisimplicial types.

- ► For nice enough *C*, can construct "Reedy fibrant" *C*-valued diagrams indexed by inverse *I*.
- Construction by well founded induction, using certain limits—the matching objects—at each stage.
- Matching objects give a functor M from (a subcategory of) CoSv(I) to C.
- Coherence problem arises from failure of *M* to be strict for $C = \mathcal{U}$.

Inverse diagrams in internal models of HoTT

Current work:

- Formulate models of type theory inside HoTT.
- Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

Inverse diagrams in internal models of HoTT

Current work:

- Formulate models of type theory inside HoTT.
- Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

Goals:

- Investigate, inside HoTT, minimal models in which coherence issues arise.
- Determine minimal sufficient conditions for the model—and by extension, type theory—to support semisimplicial types.
- Develop constructions to test the theory of higher models of type theory.
- Bonus #—provide main part of proof relating open problems in HoTT.

Technical outline

- Internal model: Categories with families
- Diagrams:
 - 1. The index categories we use
 - 2. Matching objects
 - 3. Constructing diagrams in internal CwFs

Categories with families

Common categorical model of type theory:

Definition

A category with families is a category Con together with

- ▶ a choice of terminal object $1 \in Con$
- ▶ Ty: $Con^{op} \rightarrow Set$
- ▶ $Tm: (el(Ty))^{op} \rightarrow Set$
- For every $(\Gamma, A) \in el(Ty)$, a choice of terminal object in

 $el_{Con/\Gamma} [Tm(dom(\cdot), Ty(\cdot)(A))].$

In particular, have context extension $\Gamma \triangleright A$ and substitution on types $A[\sigma]$ and terms $a[\sigma]$.

Countable locally finite inverse categories

For a category *I*, define j < i iff there's a morphism $j \leftarrow i$. *I* is *inverse* if < is well founded.

Countable locally finite inverse categories

For a category I, define j < i iff there's a morphism $j \leftarrow i$. I is *inverse* if < is well founded.

Definition

An inverse category \mathcal{I} is countable and locally finite if

- 1. there is $\#: Ob(I) \cong \mathbb{N}$ such that #j < #i whenever j < i,
- 2. for $i, j \in Ob(I)$, hom(i, j) is finite and totally ordered,
- 3. $hom(i, i) \cong Fin(1)$ for all *i*.

Write idx: $hom(i, j) \cong Fin(|hom(i, j)|)$ for the canonical order isomorphism.

Countable locally finite inverse categories

For a category I, define j < i iff there's a morphism $j \leftarrow i$. I is *inverse* if < is well founded.

Definition

An inverse category I is countable and locally finite if

- 1. there is $\#: Ob(I) \cong \mathbb{N}$ such that #j < #i whenever j < i,
- 2. for $i, j \in Ob(I)$, hom(i, j) is finite and totally ordered,
- 3. $hom(i, i) \cong Fin(1)$ for all *i*.

Write idx: $hom(i, j) \cong Fin(|hom(i, j)|)$ for the canonical order isomorphism.

Examples: Δ_+ (also \Box_+, Ω_+)

We will refer to objects $i \in Ob(I)$ as natural numbers.

o is always <-minimal.

Let I be inverse and $i \in Ob(I)$.

$$I_{\leq i}, I_{\leq i} - \text{full subcategories on objects } j < i \text{ and } j \leq i, \text{ resp.}$$

 $i / I - \text{full subcategory on } Ob(i / I) - \{id_i\}.$

The codomain forgetful functor U projects from i / I to $I_{<i}$.

Let I be inverse and $i \in Ob(I)$.

$$I_{\leq i}, I_{\leq i} - \text{full subcategories on objects } j < i \text{ and } j \leq i, \text{ resp.}$$

 $i / I - \text{full subcategory on } Ob(i / I) - \{id_i\}.$

The codomain forgetful functor U projects from i / I to $I_{<i}$.

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\leq i} \to C$. The matching object M_i of \mathcal{D} is the limit

 $\lim_{i \not \parallel_I} (\mathcal{D} \circ U).$

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\prec i} \to C$. The matching object M_i of \mathcal{D} is given by $M_i = \lim_{i \neq J} (\mathcal{D} \circ U)$.

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\leq i} \to C$. The matching object M_i of \mathcal{D} is given by $M_i = \lim_{i \neq J} (\mathcal{D} \circ U)$.

1. If *i* is <-minimal, i / I is empty and M_i is terminal.

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\leq i} \to C$. The matching object M_i of \mathcal{D} is given by $M_i = \lim_{i \neq J} (\mathcal{D} \circ U)$.

- 1. If *i* is \prec -minimal, $i \not| I$ is empty and M_i is terminal.
- 2. Assume $\mathcal{D}: I_{\leq i} \to C$. To extend \mathcal{D} to $I_{\leq i}$, simply give $\mathcal{D}_i \in C$ and an $f: \mathcal{D}_i \to M_i$.

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\leq i} \to C$. The matching object M_i of \mathcal{D} is given by $M_i = \lim_{i \neq J} (\mathcal{D} \circ U)$.

- 1. If *i* is \prec -minimal, i/I is empty and M_i is terminal.
- 2. Assume $\mathcal{D}: I_{\prec i} \to C$. To extend \mathcal{D} to $I_{\leq i}$, simply give $\mathcal{D}_i \in C$ and an $f: \mathcal{D}_i \to M_i$.

 \implies Inductive construction of diagrams \mathcal{D}

(c.f. Makkai, Shulman)

Definition

Let $i \in Ob(I)$ and $\mathcal{D}: I_{\leq i} \to C$. The matching object M_i of \mathcal{D} is given by $M_i = \lim_{i \neq J} (\mathcal{D} \circ U)$.

- 1. If *i* is \prec -minimal, $i \not \mid I$ is empty and M_i is terminal.
- 2. Assume $\mathcal{D}: I_{\leq i} \to C$. To extend \mathcal{D} to $I_{\leq i}$, simply give $\mathcal{D}_i \in C$ and an $f: \mathcal{D}_i \to M_i$.

 \implies Inductive construction of diagrams \mathcal{D}

(c.f. Makkai, Shulman)

Remark

When $C = \mathcal{U}^+$, giving (\mathcal{D}_i, f) is equivalent to giving a morphism $A_i \colon M_i \to \mathcal{U}$.

In the case $I = \Delta_{+}^{op}$, get the components for semisimplicial types.

Refining M_i with linear cosieves

Definition

For $h < i \in I$ and $t \le |hom(i, h)|$, define the *linear cosieve of shape* (i, h, t) by

$$S_{i,h,t} := \left(\bigcup_{k < h} \hom(i,k)\right) \cup \left\{f \in \hom(i,h) \mid \operatorname{idx}(f) < t\right\}.$$

Define ${}^{i,h,t/}\mathcal{I}$ to be the full subcategory of ${}^{i/}\mathcal{I}$ on $S_{i,h,t}$.

Refining M_i with linear cosieves

Definition

For $h < i \in I$ and $t \le |hom(i, h)|$, define the *linear cosieve of shape* (i, h, t) by

$$S_{i,h,t} := \left(\bigcup_{k < h} \hom(i,k)\right) \cup \left\{f \in \hom(i,h) \mid \operatorname{idx}(f) < t\right\}.$$

Define ${}^{i,h,t/I}$ to be the full subcategory of ${}^{i/I}$ on $S_{i,h,t}$.

Get the following filtration of i / I:

$$\emptyset = {}^{i,0,0/I} \hookrightarrow {}^{i,0,1/I} \hookrightarrow \cdots \hookrightarrow {}^{i,h,|\mathsf{hom}(i,h)|/I} = {}^{i,h+1,0/I} \hookrightarrow \cdots$$
$$\hookrightarrow {}^{i,i-1,|\mathsf{hom}(i,i-1)|/I} = {}^{i/\!\!/I}I$$

From

$$\varnothing = {}^{i,0,0/I} \hookrightarrow {}^{i,0,1/I} \hookrightarrow \cdots \hookrightarrow {}^{i,h,|\mathsf{hom}(i,h)|/I} = {}^{i,h+1,0/I} \hookrightarrow \cdots$$
$$\hookrightarrow {}^{i,i-1,|\mathsf{hom}(i,i-1)|/I} = {}^{i/\!\!/I} I$$

From

$$\emptyset = {}^{i,0,0/I} \hookrightarrow {}^{i,0,1/I} \hookrightarrow \cdots \hookrightarrow {}^{i,h,|\mathsf{hom}(i,h)|/I} = {}^{i,h+1,0/I} \hookrightarrow \cdots$$
$$\hookrightarrow {}^{i,i-1,|\mathsf{hom}(i,i-1)|/I} = {}^{i/\!\!/I}$$

we will recursively compute a sequence of partial matching objects

where $M_{i,h,t} \approx \lim_{i,h,t \neq I} (\mathcal{D} \circ U)$.

From now on,

- Take C = Con of an internal CwF equipped with Π -types and a universe type V
- Assume I to be inverse, countable and locally finite (for intuition, take $I = \Delta_{+}^{op}$)
- Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

From now on,

- Take C = Con of an internal CwF equipped with Π -types and a universe type V
- Assume I to be inverse, countable and locally finite (for intuition, take $I = \Delta_{+}^{op}$)
- Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

Warning: Actual construction is a large mutually recursive definition with seven main components, formalized in Agda for precision.

This talk: main ideas for key components.

"Main" component SCT : $\mathbb{N} \rightarrow Con$.

$$\begin{aligned} & \mathsf{SCT}(\mathsf{o}) :\equiv \mathbb{1} \\ & \mathsf{SCT}(\mathsf{1}) :\equiv \mathsf{SCT}(\mathsf{o}) \triangleright \mathsf{V} \\ & \mathsf{SCT}(n+\mathsf{1}) :\equiv \mathsf{SCT}(n) \triangleright \Pi^*_{n,(n,n-\mathsf{1},|\mathsf{hom}(n,n-\mathsf{1})|)} \mathsf{V} \end{aligned}$$

▶
$$\Pi^*_{n,(i,h,t)}$$
: $Ty(M_{n,(i,h,t)}) \rightarrow Ty(SCT(n))$ is a HoTT function.

"Main" component SCT : $\mathbb{N} \rightarrow Con$.

$$SCT(0) :\equiv \mathbb{1}$$

$$SCT(1) :\equiv SCT(0) \triangleright V$$

$$SCT(n+1) :\equiv SCT(n) \triangleright \prod_{n,(n,n-1,|hom(n,n-1)|)}^{*} V$$

where

▶ $\Pi^*_{n,(i,h,t)}$: $Ty(M_{n,(i,h,t)}) \rightarrow Ty(SCT(n))$ is a HoTT function.

M_{n,(i,h,t)}: Con is the context SCT(n) extended with a telescope of components of the (i,h,t)-partial matching object.

e.g. for $I = \Delta^{op}_+$,

$$M_{n,(1,0,2)} \equiv SCT(n) \triangleright A_0 \triangleright A_0$$

"Main" component SCT: $\mathbb{N} \rightarrow Con$.

$$SCT(0) :\equiv \mathbb{1}$$

$$SCT(1) :\equiv SCT(0) \triangleright V$$

$$SCT(n+1) :\equiv SCT(n) \triangleright \prod_{n,(n,n-1,|hom(n,n-1)|)}^{*} V$$

where

▶
$$\Pi_{n,(i,h,t)}^*$$
: $Ty(M_{n,(i,h,t)}) \rightarrow Ty(SCT(n))$ is a HoTT function.

• $M_{n,(i,h,t)}$: Con is the context SCT(n) extended with a telescope of components of the (*i*,*h*,*t*)-partial matching object. e.g. for $I = \Delta_{i}^{op}$.

$$M_{n,(1,0,2)} \equiv SCT(n) \triangleright A_0 \triangleright A_0$$

► $\Pi^*_{n,(i,h,t)}$ iteratedly applies the isomorphism $Ty(\Gamma \triangleright A) \cong Ty(\Gamma)$ given by Π -introduction. e.g. for $I = \Delta^{op}_+$,

$$\Pi_{n,(1,0,2)}^* V \equiv \Pi_{n,(1,0,1)}^* (\Pi_{A_0} V) \equiv \Pi_{A_0} \Pi_{A_0} V$$

From earlier: want to recursively compute partial matching objects $M_{i,h,t}$

For technical reasons, also index over *n*.

From earlier: want to recursively compute partial matching objects $M_{i,h,t}$

For technical reasons, also index over *n*. First two cases easy:

 $\begin{array}{ll} M_{n,(i,0,0)} & :\equiv & SCT(n), \\ \\ M_{n,(i,h+1,0)} & :\equiv & M_{n,(i,h,|hom(i,h)|)}. \end{array}$

Final case $M_{n,(i,h,t+1)}$ requires some machinery.

Final case $M_{n,(i,h,t+1)}$ requires some machinery.

Definition

Let S be a cosieve under *i* in *I*, and $f \in hom(i, j)$. The *restriction* $(S \cdot f)$ of S along f is the cosieve under *j* given by

 $S \cdot f := \{ \alpha : j \to k \mid k \in Ob(I), \ \alpha \circ f \in S \}.$

Final case $M_{n,(i,h,t+1)}$ requires some machinery.

Definition

Let S be a cosieve under *i* in *I*, and $f \in hom(i, j)$. The *restriction* $(S \cdot f)$ of S along f is the cosieve under *j* given by

$$S \cdot f := \{ \alpha : j \to k \mid k \in Ob(I), \ \alpha \circ f \in S \}.$$

Definition

A countable and locally finite inverse I is well oriented if for all $f \in hom(x, y)$ and $g, h \in hom(y, z)$,

$$g < h \implies g \circ f \leq h \circ f.$$

Examples: Δ_+ , \Box_+ (Ω_+ ?...)

Partial matching object as functor

Lemma

In a well oriented inverse category, the restriction of a linear cosieve $S_{i,h,t}$ along any $f \in hom(i, j)$ is a linear cosieve.

$$S_{i,h,t} \xrightarrow{f} S \cdot f = S_{j,h',t'}$$

Thus linear cosieves organize into a full subcategory LCoSv(I) of CoSv(I).

Partial matching object as functor

Lemma

In a well oriented inverse category, the restriction of a linear cosieve $S_{i,h,t}$ along any $f \in hom(i, j)$ is a linear cosieve.

$$S_{i,h,t} \xrightarrow{f} S \cdot f = S_{j,h',t'}$$

Thus linear cosieves organize into a full subcategory LCoSv(I) of CoSv(I).

Key Idea

View partial matching objects as the object part of a weak functorial action $LCoSv(I) \rightarrow Con$, and simultaneously define the action on morphisms

$$\vec{M}_{n,(i,h,t)}(f)$$
: Sub $(M_{n,(i,h,t)}, M_{n,(i,h,t)})$

(definition omitted in this talk)

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\vec{t} \right) \right]$$

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

where

A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

- A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>
- A_h is an open term of type V in context $M_{n,(h,h-1,|hom(h,h-1)|)}$

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

- A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>
- A_h is an open term of type V in context $M_{n,(h,h-1,|hom(h,h-1)|)}$
- ▶ $\overline{t} \in \text{hom}(i, h)$ is the morphism for which $idx(\overline{t}) = t$

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

- A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>
- A_h is an open term of type V in context $M_{n,(h,h-1,|hom(h,h-1)|)}$
- ▶ $\bar{t} \in \text{hom}(i, h)$ is the morphism for which $idx(\bar{t}) = t$
- $\vec{M}_{n,(i,h,t)}(\bar{t})$ is a substitution from $M_{n,(i,h,t)}$ to $M_{n,(i,h,t)\cdot\bar{t}}$

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_{h} \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

- A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>
- A_h is an open term of type V in context $M_{n,(h,h-1,|hom(h,h-1)|)}$
- ▶ $\bar{t} \in \text{hom}(i, h)$ is the morphism for which $\text{idx}(\bar{t}) = t$
- $\vec{M}_{n,(i,h,t)}(\bar{t})$ is a substitution from $M_{n,(i,h,t)}$ to $M_{n,(i,h,t)\cdot\bar{t}}$

Now we can define

$$M_{n,(i,h,t+1)} :\equiv M_{n,(i,h,t)} \triangleright A_h \left[\vec{M}_{n,(i,h,t)} \left(\bar{t} \right) \right]$$

where

- A_h is constructed earlier (since h < i) by another component of the mutually recursive definition</p>
- A_h is an open term of type V in context $M_{n,(h,h-1,|hom(h,h-1)|)}$
- ▶ $\overline{t} \in \text{hom}(i, h)$ is the morphism for which $idx(\overline{t}) = t$
- $\vec{M}_{n,(i,h,t)}(\bar{t})$ is a substitution from $M_{n,(i,h,t)}$ to $M_{n,(i,h,t)\cdot\bar{t}}$

Lemma

Let I be well oriented, $S_{i,h,t}$ be a linear sieve, $f \in hom(i, j)$ and $j \le h$. Then

 $S_{i,h,t} \cdot f = S_{j,j-1,|\hom(j,j-1)|}.$

Summary:

► Have SCT: $\mathbb{N} \to Con$. When $I = \Delta_{+}^{op}$, gives the components of semisimplicial types in the internal CwF.

Summary:

- ► Have SCT: $\mathbb{N} \to Con$. When $I = \Delta_{+}^{op}$, gives the components of semisimplicial types in the internal CwF.
- Goes via a large mutually recursive definition, with all components very closely intertwined.

Elided in this talk:

Functoriality and coherence witnesses for M and \vec{M} .

Elided in this talk:

- Functoriality and coherence witnesses for M and \vec{M} .
- > An extra well definedness proof: equivalent shapes of linear cosieves

 $(i, h + 1, 0) \sim (i, h, |hom(i, h)|)$

should give rise to equal partial matching contexts

 $M_{n,(i,h+1,0)} = M_{n,(i,h,|hom(i,h)|)}.$

Elided in this talk:

- Functoriality and coherence witnesses for M and \vec{M} .
- > An extra well definedness proof: equivalent shapes of linear cosieves

 $(i, h + 1, 0) \sim (i, h, |hom(i, h)|)$

should give rise to equal partial matching contexts

 $M_{n,(i,h+1,0)} = M_{n,(i,h,|hom(i,h)|)}.$

Dealing with explicit weakenings of the internal CwF.

Open Question

"Does HoTT interpret itself?"

Define a type Syn encoding the syntax of HoTT, plus interpretation function

 $[\![\cdot]\!]\colon \mathsf{Syn}\to \mathcal{U}$

sending syntax to their canonical interpretations (context expressions to nested Σ -types, type expressions to type families, etc.)?

Open Question

"Does HoTT interpret itself?"

Define a type Syn encoding the syntax of HoTT, plus interpretation function

 $[\![\cdot]\!]\colon \mathsf{Syn}\to \mathcal{U}$

sending syntax to their canonical interpretations (context expressions to nested Σ -types, type expressions to type families, etc.)?

Equivalently, find a notion of "model of type theory" such that

- 1. The syntax is initial, and
- 2. The "standard model" given by a universe type is an instance?

In particular, a positive answer would include the data of a morphism

 $\llbracket \cdot \rrbracket$: Con_{Syn} $\rightarrow \mathcal{U}$.

In particular, a positive answer would include the data of a morphism

$$\llbracket \cdot \rrbracket$$
: Con_{Syn} $\rightarrow \mathcal{U}$.

Our construction gives a function SST: $\mathbb{N} \to Con$ for any CwF, in particular for the syntax Syn. \implies Just precompose with SST to get

 $\llbracket \cdot \rrbracket \circ \mathsf{SST} \colon \mathbb{N} \to \mathcal{U}!$

In particular, a positive answer would include the data of a morphism

 $\llbracket \cdot \rrbracket$: Con_{Syn} $\rightarrow \mathcal{U}$.

Our construction gives a function SST: $\mathbb{N} \to Con$ for any CwF, in particular for the syntax Syn. \implies Just precompose with SST to get

 $\llbracket \cdot \rrbracket \circ \mathsf{SST} \colon \mathbb{N} \to \mathcal{U}!$

Lemma

If HoTT interprets itself, then semisimplicial types are definable in HoTT.

(conjectured by Shulman)

In particular, a positive answer would include the data of a morphism

 $\llbracket \cdot \rrbracket$: Con_{Syn} $\rightarrow \mathcal{U}$.

Our construction gives a function SST: $\mathbb{N} \to Con$ for any CwF, in particular for the syntax Syn. \implies Just precompose with SST to get

 $\llbracket \cdot \rrbracket \circ \mathsf{SST} \colon \mathbb{N} \to \mathcal{U}!$

Lemma

If HoTT interprets itself, then semisimplicial types are definable in HoTT.

(conjectured by Shulman)

Thanks!