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Background

In plain HoTT, all types A are∞-groupoids.
▶ Objects are elements a : A
▶ hom(x, y) for n-cells x and y are iterated identity types

a b

p

q

α β. . .

1-cells p, q : hom(a, b) ≡ (a =A b),
2-cells α , β : hom(p, q) ≡ (p =a=b q),
etc.

Question
How do we talk about (∞, 1)-categories in plain homotopy type theory

. . . in a way that exploits HoTT’s inherent higher categorical structure?
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Simplicial objects in type theory?

Some models of (∞, 1)-categories start with simplicial objects in some C (= Set, ∆̂, . . .)
=⇒ Look for

1. a category C of type theoretic data +

2. a construction defined in HoTT that can externally be seen to give simplicial objects in C.

Straightforward first try for (1): universe typeU is a 1-category
▶ Objects: closedU-small types
▶ hom(A, B) B function type A→ B

Might callU-valued ∆-presheaves simplicial types.

Can we achieve (2)? What remains is to defineU-valued ∆-presheaves in HoTT.
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Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data ofU-valued ∆+-presheaves, aka
semisimplicial types.

Standard encoding of a ∆+-presheaf S inU :

A0 : U, A1 : A0 → A0 → U,
A2 : (x, y, z : A0) → A1(x, y) → A1(x, z) → A1(y, z) → U,
A3 : (x, y, z,w : A0) →
(ex,y : A1(x, y)) → · · · → (ez,w : A1(z,w)) →
(fx,y,z : A2(x, y, z, ex,y, ex,z, ey,z)) → · · · → (fy,z,w : A2(y, . . . , ez,w)) → U,

. . .

Sn is the total space of An. Face maps are given by projecting out subtuples.

4 / 24



Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data ofU-valued ∆+-presheaves, aka
semisimplicial types.

Standard encoding of a ∆+-presheaf S inU :

A0 : U, S0 = A0, A1 : A0 → A0 → U, S1 = (x, y : A0) × A1(x, y)
A2 : (x, y, z : A0) → A1(x, y) → A1(x, z) → A1(y, z) → U,
S2 = (x, y, z : A0) × (ex,y : A1(x, y)) × (ex,z : A1(x, z)) × (ey,z : A1(y, z)) × A2(x, y, z, ex,y, ex,z, ey,z),
A3 : (x, y, z,w : A0) →
(ex,y : A1(x, y)) → · · · → (ez,w : A1(z,w)) →
(fx,y,z : A2(x, y, z, ex,y, ex,z, ey,z)) → · · · → (fy,z,w : A2(y, . . . , ez,w)) → U, . . .

Sn is the total space of An. Face maps are given by projecting out subtuples.

4 / 24



Semisimplicial types

Some observations:
▶ The type of each An depends on A0, . . . , An−1.
▶ For given fixed n, can define the type of tuples (A0, . . . , An), e.g. fixing n = 2,

record SST2 : Type1 where

A0 : Type0
A1 : A0 → A0 → Type0
A2 : (x y z : A0) → A1 x y → A1 x z → A1 y z → Type0

Question
Define in HoTT a function SST : Î→ U+ so that SST(n) is the type of sequences (A0, . . . , An)?

Obstruction: coherence problem because equality in HoTT is structure, not property.
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Semisimplicial types

Difficulty: haven’t managed to internalize the matching objects of semisimplicial types.
▶ For nice enough C, can construct “Reedy fibrant” C-valued diagrams indexed by inverse I.
▶ Construction by well founded induction, using certain limits—the matching objects—at

each stage.
▶ Matching objects give a functor M from (a subcategory of) CoSv(I) to C.
▶ Coherence problem arises from failure of M to be strict for C = U .
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Inverse diagrams in internal models of HoTT

Current work:
▶ Formulate models of type theory inside HoTT.
▶ Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

Goals:
▶ Investigate, inside HoTT, minimal models in which coherence issues arise.
▶ Determine minimal sufficient conditions for the model—and by extension, type theory—to

support semisimplicial types.
▶ Develop constructions to test the theory of higher models of type theory.
▶ Bonus —provide main part of proof relating open problems in HoTT.
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Technical outline

▶ Internal model: Categories with families
▶ Diagrams:

1. The index categories we use
2. Matching objects
3. Constructing diagrams in internal CwFs
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Categories with families

Common categorical model of type theory:

Definition
A category with families is a category Con together with
▶ a choice of terminal object 1 ∈ Con
▶ Ty : Conop → Set
▶ Tm :

(
el(Ty)

)op → Set
▶ For every (Γ, A) ∈ el(Ty), a choice of terminal object in

elCon/Γ
[
Tm

(
dom(·), Ty(·) (A)

) ]
.

In particular, have context extension Γ ▷ A and substitution on types A[σ] and terms a[σ].
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Countable locally finite inverse categories

For a category I, define j ≺ i iff there’s a morphism j← i.
I is inverse if ≺ is well founded.

Definition
An inverse category I is countable and locally finite if

1. there is #: Ob(I) � Î such that #j < #i whenever j ≺ i,

2. for i, j ∈ Ob(I), hom(i, j) is finite and totally ordered,

3. hom(i, i) � Fin(1) for all i.

Write idx : hom(i, j) � Fin( |hom(i, j) |) for the canonical order isomorphism.

Examples: ∆+ (also □+,Ω+)

We will refer to objects i ∈ Ob(I) as natural numbers.

0 is always ≺-minimal.
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Matching objects

Let I be inverse and i ∈ Ob(I).

I≺i, I⪯i — full subcategories on objects j ≺ i and j ⪯ i, resp.
i�
I — full subcategory on Ob(i/I) − {idi}.

The codomain forgetful functor U projects from i�I to I≺i.

Definition
Let i ∈ Ob(I) and D : I≺i → C. The matching object Mi of D is the limit

lim
i�I
(D ◦ U).

11 / 24



Matching objects

Let I be inverse and i ∈ Ob(I).

I≺i, I⪯i — full subcategories on objects j ≺ i and j ⪯ i, resp.
i�
I — full subcategory on Ob(i/I) − {idi}.

The codomain forgetful functor U projects from i�I to I≺i.

Definition
Let i ∈ Ob(I) and D : I≺i → C. The matching object Mi of D is the limit

lim
i�I
(D ◦ U).

11 / 24



Matching objects

Definition
Let i ∈ Ob(I) and D : I≺i → C. The matching object Mi of D is given by Mi = limi�I (D ◦ U).

1. If i is ≺-minimal, i�I is empty and Mi is terminal.

2. Assume D : I≺i → C. To extend D to I⪯i, simply give Di ∈ C and an f : Di → Mi.

=⇒ Inductive construction of diagrams D (c.f. Makkai, Shulman)

Remark
When C = U+, giving (Di, f ) is equivalent to giving a morphism Ai : Mi → U .

In the case I = ∆op
+ , get the components for semisimplicial types.
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Refining Mi with linear cosieves

Definition
For h < i ∈ I and t ≤ |hom(i, h) |, define the linear cosieve of shape (i, h, t) by

Si,h,t B
(⋃

k<h

hom(i, k)
)
∪
{

f ∈ hom(i, h) | idx(f ) < t
}
.

Define i,h,t/I to be the full subcategory of i/I on Si,h,t.

Get the following filtration of i�I:

∅ = i,0,0/
I ↪→ i,0,1/

I ↪→ · · · ↪→ i,h, |hom(i,h) |/
I = i,h+1,0/

I ↪→ · · ·
↪→ i,i−1, |hom(i,i−1) |/

I = i�
I
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Computing matching objects

From

∅ = i,0,0/
I ↪→ i,0,1/

I ↪→ · · · ↪→ i,h, |hom(i,h) |/
I = i,h+1,0/

I ↪→ · · ·
↪→ i,i−1, |hom(i,i−1) |/

I = i�
I

we will recursively compute a sequence of partial matching objects

1 = Mi,0,0 ⇝ Mi,0,1 ⇝ · · · ⇝ Mi,h, |hom(i,h) | = Mi,h+1,0 ⇝ · · ·
⇝ Mi,i−1, |hom(i,i−1) | = Mi,

where Mi,h,t ≈ limi,h,t�I (D ◦ U).
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Constructing diagrams in internal CwFs

From now on,
▶ Take C = Con of an internal CwF equipped with Π-types and a universe type V
▶ Assume I to be inverse, countable and locally finite (for intuition, take I = ∆op

+ )
▶ Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

Warning: Actual construction is a large mutually recursive definition with seven main
components, formalized in Agda for precision.

This talk: main ideas for key components.
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Constructing diagrams in internal CwFs
“Main” component SCT : Î→ Con.

SCT(0) :≡ 1

SCT(1) :≡ SCT(0) ▷ V

SCT(n + 1) :≡ SCT(n) ▷ Π∗n,(n,n−1, |hom(n,n−1) | )V

where
▶ Π∗n,(i,h,t) : Ty(Mn,(i,h,t) ) → Ty(SCT(n)) is a HoTT function.

▶ Mn,(i,h,t) : Con is the context SCT(n) extended with a telescope of components of the
(i,h,t)-partial matching object.
e.g. for I = ∆op

+ ,
Mn,(1,0,2) ≡ SCT(n) ▷ A0 ▷ A0

▶ Π∗n,(i,h,t) iteratedly applies the isomorphism Ty(Γ ▷ A) � Ty(Γ) given by Π-introduction.
e.g. for I = ∆op

+ ,
Π∗n,(1,0,2)V ≡ Π∗n,(1,0,1) (ΠA0 V) ≡ ΠA0ΠA0 V
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Constructing diagrams in internal CwFs

From earlier: want to recursively compute partial matching objects Mi,h,t

1 = Mi,0,0 ⇝ Mi,0,1 ⇝ · · · ⇝ Mi,h, |hom(i,h) | = Mi,h+1,0 ⇝ · · ·
⇝ Mi,i−1, |hom(i,i−1) | = Mi

For technical reasons, also index over n.

First two cases easy:

Mn,(i,0,0) :≡ SCT(n),
Mn,(i,h+1,0) :≡ Mn,(i,h, |hom(i,h) | ) .
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Computing matching objects

Final case Mn,(i,h,t+1) requires some machinery.

Definition
Let S be a cosieve under i in I, and f ∈ hom(i, j).
The restriction (S · f ) of S along f is the cosieve under j given by

S · f B
{
α : j→ k | k ∈ Ob(I), α ◦ f ∈ S

}
.

Definition
A countable and locally finite inverse I is well oriented if for all f ∈ hom(x, y) and
g, h ∈ hom(y, z),

g < h =⇒ g ◦ f ≤ h ◦ f .

Examples: ∆+,□+ (Ω+?. . . )
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Partial matching object as functor

Lemma
In a well oriented inverse category, the restriction of a linear cosieve Si,h,t along any
f ∈ hom(i, j) is a linear cosieve.

Si,h,t S · f = Sj,h′,t′
f

Thus linear cosieves organize into a full subcategory LCoSv(I) of CoSv(I).

Key Idea
View partial matching objects as the object part of a weak functorial action LCoSv(I) → Con,
and simultaneously define the action on morphisms

®Mn,(i,h,t) (f ) : Sub(Mn,(i,h,t) , Mn,(i,h,t) ·f )

(definition omitted in this talk)
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Constructing diagrams in internal CwFs

Now we can define
Mn,(i,h,t+1) :≡ Mn,(i,h,t) ▷ Ah

[®Mn,(i,h,t) (t̄)
]

where

▶ Ah is constructed earlier (since h < i) by another component of the mutually recursive
definition

▶ Ah is an open term of type V in context Mn,(h,h−1, |hom(h,h−1) | )
▶ t̄ ∈ hom(i, h) is the morphism for which idx(t̄) = t
▶ ®Mn,(i,h,t) (t̄) is a substitution from Mn,(i,h,t) to Mn,(i,h,t) ·t̄

Lemma
Let I be well oriented, Si,h,t be a linear sieve, f ∈ hom(i, j) and j ≤ h. Then

Si,h,t · f = Sj,j−1, |hom(j,j−1) | .
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Constructing diagrams in internal CwFs

Summary:
▶ Have SCT : Î→ Con.

When I = ∆op
+ , gives the components of semisimplicial types in the internal CwF.

▶ Goes via a large mutually recursive definition, with all components very closely
intertwined.
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Constructing diagrams in internal CwFs

Elided in this talk:
▶ Functoriality and coherence witnesses for M and ®M.

▶ An extra well definedness proof: equivalent shapes of linear cosieves

(i, h + 1, 0) ∼ (i, h, |hom(i, h) |)

should give rise to equal partial matching contexts

Mn,(i,h+1,0) = Mn,(i,h, |hom(i,h) | ) .

▶ Dealing with explicit weakenings of the internal CwF.
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Coda—Relating open problems

Open Question “Does HoTT interpret itself?”

Define a type Syn encoding the syntax of HoTT, plus interpretation function

J·K : Syn→ U

sending syntax to their canonical interpretations (context expressions to nested Σ-types, type
expressions to type families, etc.)?

Equivalently, find a notion of “model of type theory” such that

1. The syntax is initial, and

2. The “standard model” given by a universe type is an instance?
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Coda—Relating open problems
In particular, a positive answer would include the data of a morphism

J·K : ConSyn → U .

Our construction gives a function SST : Î→ Con for any CwF, in particular for the syntax Syn.
=⇒ Just precompose with SST to get

J·K ◦ SST : Î→ U!

Lemma
If HoTT interprets itself, then semisimplicial types are definable in HoTT.

(conjectured by Shulman)

Thanks!
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