Constructing inverse diagrams
in (internal models of) HoTT

Josh Chen
j.w.w. Nicolai Kraus
University of Nottingham

YaMCATS 29

15 Dec 2022

1/ 24

Background

In plain HoTT, all types A are co-groupoids.
> Objects are elementsa: A

> hom(x, y) for n-cells x and y are iterated identity types

/// \\\ 1-cells p,q: hom(a,b) = (a = b),

2-cells a,B: hom(p,q) = (p =a=p 9),

K\\ /// etc.

2/24

Background

In plain HoTT, all types A are co-groupoids.
> Objects are elementsa: A

> hom(x, y) for n-cells x and y are iterated identity types

/// \\\ 1-cells p,q: hom(a,b) = (a = b),

2-cells a,B: hom(p,q) = (p =a=p 9),

K\\ /// etc.

Question
How do we talk about (oo, 1)-categories in plain homotopy type theory?

2/24

Background

In plain HoTT, all types A are co-groupoids.
> Objects are elementsa: A

> hom(x, y) for n-cells x and y are iterated identity types

/// .\\\ 1-cells p,q: hom(a,b) = (a =4 b),

2-cells a,B: hom(p,q) = (p =a=p 9),

\\\ /// etc.

Question

How do we talk about (oo, 1)-categories in plain homotopy type theory
..in a way that exploits HoTT’s inherent higher categorical structure?

2/24

Simplicial objects in type theory?

Some models of (oo, 1)-categories start with simplicial objects in some C (= Set, A,)
— Look for

1. a category C of type theoretic data +

2. a construction defined in HoTT that can externally be seen to give simplicial objects in C.

Straightforward first try for (1): universe type U is a 1-category
> Objects: closed U-small types
> hom(A, B) := functiontypeA — B

Might call U/-valued A-presheaves simplicial types.

Can we achieve (2)? What remains is to define Z/-valued A-presheaves in HoTT.

3/24

Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data of Z/-valued A, -presheaves, aka
semisimplicial types.

Standard encoding of a A.-presheaf & in U:

Ao: U, A A — A, — U,

A2: (X’y,Z: AO) _>A1(X’y) —>A—|(X,Z) —>A1(y,Z) _— (Lly
A3: (X’y329W: AO) -

(ex,y: A(x,y) = - o (ezw: Az, w)) —

(fx,y,z: AZ(X’ y’ z’ eX,y’ eX,Z’ ey,z)) — (fy,z,w: A2(y’ ceey eZ,W)) - (LI7

&y, is the total space of A,,. Face maps are given by projecting out subtuples.

4/ 24

Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data of U/-valued A, -presheaves, aka
semisimplicial types.

Standard encoding of a A.-presheaf & in U:

Ao: U, So=AhAo, AiiAy > A DU, & =(xy:A)XAxy)
Ay (X y,2: Ag) = A(xy) = A(x,2) = Ay, 2) = U,
o= (X,¥,2: Ag) X (exy: A(XY)) X (exz: Ar(X,2)) X (eyz: Ai(Y,2)) X Ar(X, Y, 2, exy, €xz 7).
Ay (X y,z,w: Ag) —
(exy: Ai(x,y)) = -+ = (ezu: Ar(z,w)) —

(fx,y,z: A, (X, Y,Z,exy, exz, ey,z)) — (fy,z,w: A, (Ya cees ez,w)) - U,

&y, is the total space of A,,. Face maps are given by projecting out subtuples.

4/ 24

Semisimplicial types

Some observations:
> The type of each A, dependson A, ..., A,_..
> For given fixed n, can define the type of tuples (Ao, ..., A,), e.g. fixingn = 2,
record SST, : Type, where
Ao : Typeo
Ayt Ao 2 Ay = Typeo
A, : (xyz:A) A xy A x2z Ay 2z~ Type

Question
Define in HoTT a function SST: N — U™ so that SST(n) is the type of sequences (Ao, . . .,A;)?

5/24

Semisimplicial types

Some observations:
»> The type of each A, dependson A, ...,A ..

> For given fixed n, can define the type of tuples (Ao, ..., A,), e.g. fixingn = 2,
record SST, : Type, where
Ay @ Typeo
Ay i Ay 2 Ay » Typeo
A, : (xyz : A) 2 A xy A x2z A yz -~ Type

Define in HoTT a function SST: N — " so that SST(n) is the type of sequences (A, . .

More generally, is the type of semisimplicial types definable in (plain) HoTT?

L A)?

5/24

Semisimplicial types

Some observations:
»> The type of each A, dependson A, ...,A ..

> For given fixed n, can define the type of tuples (Ao, ..., A,), e.g. fixingn = 2,
record SST, : Type, where
Ay @ Typeo
Ay i Ay 2 Ay » Typeo
A, : (xyz : A) 2 A xy A x2z A yz -~ Type

Define in HoTT a function SST: N — " so that SST(n) is the type of sequences (A, . .

More generally, is the type of semisimplicial types definable in (plain) HoTT?

L A)?

Obstruction: coherence problem because equality in HOTT is structure, not property.

5/24

Semisimplicial types

Difficulty: haven't managed to internalize the matching objects of semisimplicial types.
> For nice enough C, can construct “Reedy fibrant” C-valued diagrams indexed by inverse 7.
> Construction by well founded induction, using certain limits—the matching objects—at
each stage.
> Matching objects give a functor M from (a subcategory of) CoSv(I) to C.
> Coherence problem arises from failure of M to be strict for C = U.

6/24

Inverse diagrams in internal models of HOTT

Current work:
> Formulate models of type theory inside HoTT.

> Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

7124

Inverse diagrams in internal models of HOTT

Current work:
> Formulate models of type theory inside HoTT.

> Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

Goals:
> Investigate, inside HoTT, minimal models in which coherence issues arise.

> Determine minimal sufficient conditions for the model—and by extension, type theory—to
support semisimplicial types.

> Develop constructions to test the theory of higher models of type theory.

> Bonus T—provide main part of proof relating open problems in HoTT.

7124

Technical outline

> Internal model: Categories with families
> Diagrams:
1. The index categories we use

2. Matching objects
3. Constructing diagrams in internal CwFs

8/24

Categories with families

Common categorical model of type theory:

Definition

A category with families is a category Con together with
> a choice of terminal object T € Con
> Ty: Con°? — Set
> Tm: (el(Ty))” — Set

> For every (I, A) € el(Ty), a choice of terminal object in

elcon/r [Tm(dom(-), Ty(-) (4))]

In particular, have context extension " > A and substitution on types A[o] and terms a[o].

9/24

Countable locally finite inverse categories

For a category 7, define j < i iff there’s a morphism j « i.
7 is inverse if < is well founded.

10/ 24

Countable locally finite inverse categories

For a category 7, define j < i iff there’s a morphism j « i.
7 is inverse if < is well founded.

Definition
An inverse category 7 is countable and locally finite if

1. there is #: Ob(I) = N such that #j < #i whenever j < i,
2. fori,j € 0b(I), hom(i,j) is finite and totally ordered,
3. hom(i, i) = Fin(1) for all i.

Write idx: hom(i,) = Fin(|hom(i,j)|) for the canonical order isomorphism.

10/ 24

Countable locally finite inverse categories

For a category 7, define j < i iff there’s a morphism j « i.
7 is inverse if < is well founded.

Definition

An inverse category 7 is countable and locally finite if
1. there is #: Ob(I) = N such that #j < #i whenever j < i,
2. fori,j € 0b(I), hom(i,j) is finite and totally ordered,
3. hom(i, i) = Fin(1) for all i.

Write idx: hom(i,) = Fin(|hom(i,j)|) for the canonical order isomorphism.
Examples: A, (also O, Q)
We will refer to objects i € Ob(T) as natural numbers.

o is always <-minimal.

10/ 24

Matching objects

Let 7 be inverse and i € Ob(T).

I, I.i —full subcategories on objectsj < iandj < i, resp.

/7 — full subcategory on ob('1) - {id:}.

The codomain forgetful functor U projects from i/T to 1.

1/ 24

Matching objects

Let 7 be inverse and i € Ob(T).

I, I.i —full subcategories on objectsj < iandj < i, resp.

/7 — full subcategory on ob('1) - {id:}.

The codomain forgetful functor U projects from i/T to 1.
Definition

Leti € Ob(Z) and D : ZI-; — C. The matching object M; of @ is the limit

lim(D o U).
,_I//r?(oU)

1/ 24

Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

12/ 24

Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

1. If i is <-minimal, /7 is empty and M; is terminal.

12/ 24

Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

1. Ifiis <-minimal, T is empty and M; is terminal.

2. Assume @ : I.; — C. To extend @ to I<j, simply give D; € Cand anf: ©D; — M;.

12/ 24

Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

1. Ifiis <-minimal, T is empty and M; is terminal.

2. Assume @ : I.; — C. To extend @ to I<j, simply give D; € Cand anf: ©D; — M;.

= Inductive construction of diagrams @ (c.f. Makkai, Shulman)

12/ 24

Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

1. Ifiis <-minimal, T is empty and M; is terminal.

2. Assume @ : I.; — C. To extend @ to I<j, simply give D; € Cand anf: ©D; — M;.

= Inductive construction of diagrams @ (c.f. Makkai, Shulman)

Remark
When C = U™, giving (D, f) is equivalent to giving a morphism A;: M; — U.

In the case 7 = Aip, get the components for semisimplicial types.

12/ 24

Refining M; with linear cosieves

Definition
Forh < i€ 7 andt < |hom(i, h)|, define the linear cosieve of shape (i, h, t) by

Sine = (U hom(i, k)) U {f € hom(i, h) | idx(f) < t}.

k<h

Define “"'/T to be the full subcategory of iT on Sint-

13/24

Refining M; with linear cosieves

Definition
Forh < i€ 7 andt < |hom(i, h)|, define the linear cosieve of shape (i, h, t) by

Sine = (U hom(i, k)) U {f € hom(i, h) | idx(f) < t}.

k<h

Define *M/T to be the full subcategory of iT on Sint

Get the following filtration of //1:

o = i,o,o/I N i,o,1/j PPN i,h,|hom(i,h)|/I — i,h+1,o/j s ...

s i,i—1,|hom(i,i—1)|/]- — i//]-

13/24

Computing matching objects

From

@ = WO0/r oy oAy oy ... oy Bhlhom(Gih)l/z _ ihtro/p L.

s i,i—1,|hom(i,i—1)|/J- — i//f

14 [24

Computing matching objects

From

o = i,o,o/I PN i,o,1/I PPN i,h,|hom(i,h)|/I — i,h+1,o/I s ...

s i,i—1,|hom(i,i—1)|/f — i//]-
we will recursively compute a sequence of partial matching objects

1= Mioo ™ Mjgq > -0 v Mi,h,lhom(i,h)l = Mjpp1,0 ™ -

~> Mji—q hom(ii-1)] = Mi,

where Mip¢ = liminy (D o U).

14 [24

Constructing diagrams in internal CwFs

From now on,
> Take C = Con of an internal CwF equipped with lN-types and a universe type V
> Assume T to be inverse, countable and locally finite (for intuition, take 7 = Aip)
> Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

15/ 24

Constructing diagrams in internal CwFs

From now on,
> Take C = Con of an internal CwF equipped with lN-types and a universe type V
> Assume T to be inverse, countable and locally finite (for intuition, take 7 = Aip)

> Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

Warning: Actual construction is a large mutually recursive definition with seven main
components, formalized in Agda for precision.

This talk: main ideas for key components.

15/ 24

Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.
SCT(0) := 1
SCT(1) :=SCT(0) >V
SCT(n +1) := SCT(n) » n:,(n,n—1,|hom(n,n—1)|)v

where

> I Ty(Mn, (int)) — Ty(SCT(n)) is a HoTT function.

* .
n,(i,ht)

16 [24

Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.
SCT(0) =1
SCT(1) := SCT(0) > V
SCT(n+1) := SCT(n) > T 4 thom(na—n) ¥
where
> I'I:’(,.,h’t) : Ty(Mp (ine)) — Ty(SCT(n)) is a HOTT function.
» My (int) : Con is the context SCT(n) extended with a telescope of components of the
(i,h,t)-partial matching object.

e.g for 7 = A,
Mp, (1,02) = SCT(n) > Ao > Ao

16/ 24

Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.

SCT(0) =1
SCT(1) := SCT(0) >V
SCT(n+1) := SCT(n) » n:,(n,n—1,|hom(n,n—1)|)v

where
> I'I:’(,.,h’t) : TY(Mn (ine)) — Ty(SCT(n)) is a HOTT function.
» My (int) : Con is the context SCT(n) extended with a telescope of components of the
(i,h,t)-partial matching object.
e.g for 7 = A,
Mp (1,02) = SCT(n) > Ao > Ao

1R

> I'I:; (iht) iteratedly applies the isomorphism Ty(I" > A)
eg. forl = Ai",
I_IAO nAOV

n:a(LO,Z)V = n:,(1,o,1)(non)

Ty(I") given by M-introduction.

16/ 24

Constructing diagrams in internal CwFs

From earlier: want to recursively compute partial matching objects M; +

T = Migo ™ Mgy > <o~ Mipihom(ih)| = Mihso ™ -

M Miioqhom(ii—1)] = Mi

For technical reasons, also index over n.

17124

Constructing diagrams in internal CwFs

From earlier: want to recursively compute partial matching objects M; +

T = Moo » Migq » =+~ Mipihom(ih)| = Mipso ™ -

M Miioqhom(ii—1)] = Mi

For technical reasons, also index over n.
First two cases easy:

Mp (i00) = SCT(n),

Mp,(i,h+1,0) ‘= Mn (i, |hom(ih)]) -

17124

Computing matching objects

Final case My, (i n t+1) requires some machinery.

18 /24

Computing matching objects

Final case My, (i n t+1) requires some machinery.

Definition

Let S be a cosieve underiin I, and f € hom(i,j).
The restriction (S - f) of S along f is the cosieve under j given by

S-f={a:j> k|keob(l), aof €S}

18 /24

Computing matching objects

Final case My, (i n t+1) requires some machinery.

Definition

Let S be a cosieve underiin I, and f € hom(i,j).
The restriction (S - f) of S along f is the cosieve under j given by

S-f={a:j> k|keob(l), aof €S}

Definition
A countable and locally finite inverse I is well oriented if for all f € hom(x, y) and
g’ h G hom(y’ Z)I

g<h = gof<hof.

Examples: A,, O, (Q42..)

18 /24

Partial matching object as functor

In a well oriented inverse category, the restriction of a linear cosieve S;p, ; along any
f € hom(i,j) is a linear cosieve.

f
Sing —> S f=Sjwy

Thus linear cosieves organize into a full subcategory LCoSv(I) of CoSv(T).

19/24

Partial matching object as functor

In a well oriented inverse category, the restriction of a linear cosieve S;p, ; along any
f € hom(i,j) is a linear cosieve.

f
Sint —> S f=Sjwyr

Thus linear cosieves organize into a full subcategory LCoSv(T) of CoSv(T).

View partial matching objects as the object part of a weak functorial action LCoSv(Z) — Con,
and simultaneously define the action on morphisms

M. inty (F) 2 Sub(My ity > M (ipt))

(definition omitted in this talk)

v

19/24

Constructing diagrams in internal CwFs

Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]

where

20/ 24

Constructing diagrams in internal CwFs
Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

20/ 24

Constructing diagrams in internal CwFs

Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)

20/ 24

Constructing diagrams in internal CwFs

Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

20/ 24

Constructing diagrams in internal CwFs

Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

> /\7ln,(,-,h,t) (t) is a substitution from M (ipt) to My in¢) 2

20/ 24

Constructing diagrams in internal CwFs

Now we can define
M (iht+1) = Mp (int) > An [/V'n,(i.h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

> l\7ln,(,-,h,t) (t) is a substitution from M (ipt) to My in¢) 2

20/ 24

Constructing diagrams in internal CwFs

Now we can define
M, (i t41) 7= Ma (ine) > An [Mo (ine) (D]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

> My (ine) (F) is a substitution from My (o) t0 My (ih.1) ¢

Let 7 be well oriented, S;+ be a linear sieve, f € hom(i,j) and j < h. Then

Sint - f = Sjj—1,]hom(jj-1)]|-

20/24

Constructing diagrams in internal CwFs

Summary:

» Have SCT: N — Con.
When I = Aip, gives the components of semisimplicial types in the internal CwF.

21/ 24

Constructing diagrams in internal CwFs

Summary:

» Have SCT: N — Con.
When I = Aip, gives the components of semisimplicial types in the internal CwF.

> Goes via a large mutually recursive definition, with all components very closely
intertwined.

21/ 24

Constructing diagrams in internal CwFs

Elided in this talk:

> Functoriality and coherence witnesses for M and m.

22 /24

Constructing diagrams in internal CwFs

Elided in this talk:
> Functoriality and coherence witnesses for M and M.

> An extra well definedness proof: equivalent shapes of linear cosieves
(i, h +1,0) ~ (i, h, [hom(i, h)|)
should give rise to equal partial matching contexts

Mn, (i.h+1,0) = Mn,(ih,lhom (i,h)|) -

22/24

Constructing diagrams in internal CwFs

Elided in this talk:
> Functoriality and coherence witnesses for M and M.

> An extra well definedness proof: equivalent shapes of linear cosieves
(i, h +1,0) ~ (i, h, |hom(i, h)|)
should give rise to equal partial matching contexts
Mn, (i.h+1,0) = Mn,(ih,lhom (i,h)|) -

> Dealing with explicit weakenings of the internal CwF.

22/24

Coda—Relating open problems

Define a type Syn encoding the syntax of HoTT, plus interpretation function
[-]: syn > u

sending syntax to their canonical interpretations (context expressions to nested X -types, type
expressions to type families, etc.)?

23/24

Coda—Relating open problems

Define a type Syn encoding the syntax of HoTT, plus interpretation function
[-]: syn > u

sending syntax to their canonical interpretations (context expressions to nested X -types, type
expressions to type families, etc.)?

Equivalently, find a notion of “model of type theory” such that
1. The syntax is initial, and
2. The “standard model” given by a universe type is an instance?

23/24

Coda—Relating open problems

In particular, a positive answer would include the data of a morphism

[-]: congyn — U.

24/ 24

Coda—Relating open problems

In particular, a positive answer would include the data of a morphism
[-]: congyn — U.

Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!

24/ 24

Coda—Relating open problems

In particular, a positive answer would include the data of a morphism
[-]: congyn — U.

Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!

If HoTT interprets itself, then semisimplicial types are definable in HOTT. I

(conjectured by Shulman)

24/ 24

Coda—Relating open problems

In particular, a positive answer would include the data of a morphism
[-]: congyn — U.

Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!

If HoTT interprets itself, then semisimplicial types are definable in HOTT. I

(conjectured by Shulman)

Thanks!

24/ 24

