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Background

In plain HoTT, all types A are co-groupoids.
> Objects are elementsa: A

> hom(x, y) for n-cells x and y are iterated identity types

/// \\\ 1-cells p,q: hom(a,b) = (a = b),

2-cells a,B: hom(p,q) = (p =a=p 9),

K\\ /// etc.
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Background

In plain HoTT, all types A are co-groupoids.
> Objects are elementsa: A

> hom(x, y) for n-cells x and y are iterated identity types

/// .\\\ 1-cells p,q: hom(a,b) = (a =4 b),

2-cells a,B: hom(p,q) = (p =a=p 9),

\\\ /// etc.

Question

How do we talk about (oo, 1)-categories in plain homotopy type theory
..in a way that exploits HoTT’s inherent higher categorical structure?
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Simplicial objects in type theory?

Some models of (oo, 1)-categories start with simplicial objects in some C (= Set, A, )
— Look for

1. a category C of type theoretic data +

2. a construction defined in HoTT that can externally be seen to give simplicial objects in C.

Straightforward first try for (1): universe type U is a 1-category
> Objects: closed U-small types
> hom(A, B) := functiontypeA — B

Might call U/-valued A-presheaves simplicial types.

Can we achieve (2)? What remains is to define Z/-valued A-presheaves in HoTT.
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Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data of Z/-valued A, -presheaves, aka
semisimplicial types.

Standard encoding of a A.-presheaf & in U:

Ao: U, A A — A, — U,

A2: (X’y,Z: AO) _>A1(X’y) —>A—|(X,Z) —>A1(y,Z) _— (Lly
A3: (X’y329W: AO) -

(ex,y: A(x,y) = - o (ezw: Az, w)) —

(fx,y,z: AZ(X’ y’ z’ eX,y’ eX,Z’ ey,z)) — (fy,z,w: A2(y’ ceey eZ,W)) - (LI7

&y, is the total space of A,,. Face maps are given by projecting out subtuples.
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Semisimplicial types

First, simplify by forgetting degeneracy maps: ask for the data of U/-valued A, -presheaves, aka
semisimplicial types.

Standard encoding of a A.-presheaf & in U:

Ao: U, So=AhAo, AiiAy > A DU, & =(xy:A)XAxy)
Ay (X y,2: Ag) = A(xy) = A(x,2) = Ay, 2) = U,
o= (X,¥,2: Ag) X (exy: A(XY)) X (exz: Ar(X,2)) X (eyz: Ai(Y,2)) X Ar(X, Y, 2, exy, €xz 7).
Ay (X y,z,w: Ag) —
(exy: Ai(x,y)) = -+ = (ezu: Ar(z,w)) —

(fx,y,z: A, (X, Y,Z,exy, exz, ey,z)) — (fy,z,w: A, (Ya cees ez,w)) - U,

&y, is the total space of A,,. Face maps are given by projecting out subtuples.
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Semisimplicial types

Some observations:
> The type of each A, dependson A, ..., A,_..
> For given fixed n, can define the type of tuples (Ao, ..., A,), e.g. fixingn = 2,
record SST, : Type, where
Ao : Typeo
Ayt Ao 2 Ay = Typeo
A, : (xyz:A) A xy A x2z Ay 2z~ Type

Question
Define in HoTT a function SST: N — U™ so that SST(n) is the type of sequences (Ao, . . .,A;)?
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Semisimplicial types

Some observations:
»> The type of each A, dependson A, ...,A ..

> For given fixed n, can define the type of tuples (Ao, ..., A,), e.g. fixingn = 2,
record SST, : Type, where
Ay @ Typeo
Ay i Ay 2 Ay » Typeo
A, : (xyz : A) 2 A xy A x2z A yz -~ Type

Define in HoTT a function SST: N — " so that SST(n) is the type of sequences (A, . .

More generally, is the type of semisimplicial types definable in (plain) HoTT?

L A)?

Obstruction: coherence problem because equality in HOTT is structure, not property.
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Semisimplicial types

Difficulty: haven't managed to internalize the matching objects of semisimplicial types.
> For nice enough C, can construct “Reedy fibrant” C-valued diagrams indexed by inverse 7.
> Construction by well founded induction, using certain limits—the matching objects—at
each stage.
> Matching objects give a functor M from (a subcategory of) CoSv(I) to C.
> Coherence problem arises from failure of M to be strict for C = U.
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Inverse diagrams in internal models of HOTT

Current work:
> Formulate models of type theory inside HoTT.

> Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.
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Inverse diagrams in internal models of HOTT

Current work:
> Formulate models of type theory inside HoTT.

> Construct semisimplicial types and more general inverse diagrams in the model.

Control the height of the tower of coherence conditions by truncating the internal model.

Goals:
> Investigate, inside HoTT, minimal models in which coherence issues arise.

> Determine minimal sufficient conditions for the model—and by extension, type theory—to
support semisimplicial types.

> Develop constructions to test the theory of higher models of type theory.

> Bonus T—provide main part of proof relating open problems in HoTT.
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Technical outline

> Internal model: Categories with families
> Diagrams:
1. The index categories we use

2. Matching objects
3. Constructing diagrams in internal CwFs
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Categories with families

Common categorical model of type theory:

Definition

A category with families is a category Con together with
> a choice of terminal object T € Con
> Ty: Con°? — Set
> Tm: (el(Ty))” — Set

> For every (I, A) € el(Ty), a choice of terminal object in

elcon/r [Tm(dom(-), Ty(-) (4)) ]

In particular, have context extension " > A and substitution on types A[o] and terms a[o].
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Countable locally finite inverse categories

For a category 7, define j < i iff there’s a morphism j « i.
7 is inverse if < is well founded.

10/ 24
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7 is inverse if < is well founded.

Definition
An inverse category 7 is countable and locally finite if

1. there is #: Ob(I) = N such that #j < #i whenever j < i,
2. fori,j € 0b(I), hom(i,j) is finite and totally ordered,
3. hom(i, i) = Fin(1) for all i.

Write idx: hom(i, ) = Fin(|hom(i,j)|) for the canonical order isomorphism.
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Countable locally finite inverse categories

For a category 7, define j < i iff there’s a morphism j « i.
7 is inverse if < is well founded.

Definition

An inverse category 7 is countable and locally finite if
1. there is #: Ob(I) = N such that #j < #i whenever j < i,
2. fori,j € 0b(I), hom(i,j) is finite and totally ordered,
3. hom(i, i) = Fin(1) for all i.

Write idx: hom(i, ) = Fin(|hom(i,j)|) for the canonical order isomorphism.
Examples: A, (also O, Q)
We will refer to objects i € Ob(T) as natural numbers.

o is always <-minimal.
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Matching objects

Let 7 be inverse and i € Ob(T).

I, I.i —full subcategories on objectsj < iandj < i, resp.

/7 — full subcategory on ob('1) - {id:}.

The codomain forgetful functor U projects from i/T to 1.
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Matching objects

Let 7 be inverse and i € Ob(T).

I, I.i —full subcategories on objectsj < iandj < i, resp.

/7 — full subcategory on ob('1) - {id:}.

The codomain forgetful functor U projects from i/T to 1.
Definition

Leti € Ob(Z) and D : ZI-; — C. The matching object M; of @ is the limit

lim(D o U).
,_I//r?( oU)
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Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J
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Matching objects

Definition
Leti € Ob(I) and D: I.; — C. The matching object M; of D is given by M; = limi; (D o U). J

1. Ifiis <-minimal, T is empty and M; is terminal.

2. Assume @ : I.; — C. To extend @ to I<j, simply give D; € Cand anf: ©D; — M;.

= Inductive construction of diagrams @ (c.f. Makkai, Shulman)

Remark
When C = U™, giving (D, f) is equivalent to giving a morphism A;: M; — U.

In the case 7 = Aip, get the components for semisimplicial types.
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Refining M; with linear cosieves

Definition
Forh < i€ 7 andt < |hom(i, h)|, define the linear cosieve of shape (i, h, t) by

Sine = (U hom(i, k)) U {f € hom(i, h) | idx(f) < t}.

k<h

Define “"'/T to be the full subcategory of iT on Sint-
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Refining M; with linear cosieves

Definition
Forh < i€ 7 andt < |hom(i, h)|, define the linear cosieve of shape (i, h, t) by

Sine = (U hom(i, k)) U {f € hom(i, h) | idx(f) < t}.

k<h

Define *M/T to be the full subcategory of iT on Sint

Get the following filtration of //1:

o = i,o,o/I N i,o,1/j PPN i,h,|hom(i,h)|/I — i,h+1,o/j s ...

s i,i—1,|hom(i,i—1)|/]- — i//]-
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Computing matching objects

From

@ = WO0/r oy oAy oy ... oy Bhlhom(Gih)l/z _ ihtro/p L.

s i,i—1,|hom(i,i—1)|/J- — i//f
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Computing matching objects

From

o = i,o,o/I PN i,o,1/I PPN i,h,|hom(i,h)|/I — i,h+1,o/I s ...

s i,i—1,|hom(i,i—1)|/f — i//]-
we will recursively compute a sequence of partial matching objects

1= Mioo ™ Mjgq > -0 v Mi,h,lhom(i,h)l = Mjpp1,0 ™ -

~> Mji—q hom(ii-1)] = Mi,

where Mip¢ = liminy (D o U).
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Constructing diagrams in internal CwFs

From now on,
> Take C = Con of an internal CwF equipped with lN-types and a universe type V
> Assume T to be inverse, countable and locally finite (for intuition, take 7 = Aip)
> Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.
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Constructing diagrams in internal CwFs

From now on,
> Take C = Con of an internal CwF equipped with lN-types and a universe type V
> Assume T to be inverse, countable and locally finite (for intuition, take 7 = Aip)

> Work in HoTT (informally)

Note: Categorical terms will still have the HoTT equivalent of their usual meanings.

Warning: Actual construction is a large mutually recursive definition with seven main
components, formalized in Agda for precision.

This talk: main ideas for key components.
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Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.
SCT(0) := 1
SCT(1) :=SCT(0) >V
SCT(n +1) := SCT(n) » n:,(n,n—1,|hom(n,n—1)|)v

where

> I Ty(Mn, (int)) — Ty(SCT(n)) is a HoTT function.

* .
n,(i,ht)
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Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.
SCT(0) =1
SCT(1) := SCT(0) > V
SCT(n+1) := SCT(n) > T 4 thom(na—n) ¥
where
> I'I:’(,.,h’t) : Ty(Mp (ine)) — Ty(SCT(n)) is a HOTT function.
» My (int) : Con is the context SCT(n) extended with a telescope of components of the
(i,h,t)-partial matching object.

e.g for 7 = A,
Mp, (1,02) = SCT(n) > Ao > Ao
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Constructing diagrams in internal CwFs
“Main” component SCT: N — Con.

SCT(0) =1
SCT(1) := SCT(0) >V
SCT(n+1) := SCT(n) » n:,(n,n—1,|hom(n,n—1)|)v

where
> I'I:’(,.,h’t) : TY(Mn (ine)) — Ty(SCT(n)) is a HOTT function.
» My (int) : Con is the context SCT(n) extended with a telescope of components of the
(i,h,t)-partial matching object.
e.g for 7 = A,
Mp (1,02) = SCT(n) > Ao > Ao

1R

> I'I:; (iht) iteratedly applies the isomorphism Ty(I" > A)
eg. forl = Ai",
I_IAO nAOV

n:a(LO,Z)V = n:,(1,o,1)(non)

Ty(I") given by M-introduction.
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Constructing diagrams in internal CwFs

From earlier: want to recursively compute partial matching objects M;  +

T = Migo ™ Mgy > <o~ Mipihom(ih)| = Mihso ™ -

M Miioqhom(ii—1)] = Mi

For technical reasons, also index over n.
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Constructing diagrams in internal CwFs

From earlier: want to recursively compute partial matching objects M;  +

T = Moo » Migq » =+~ Mipihom(ih)| = Mipso ™ -

M Miioqhom(ii—1)] = Mi

For technical reasons, also index over n.
First two cases easy:

Mp (i00) = SCT(n),

Mp,(i,h+1,0) ‘= Mn (i, |hom(ih)]) -

17124



Computing matching objects

Final case My, (i n t+1) requires some machinery.
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Final case My, (i n t+1) requires some machinery.

Definition

Let S be a cosieve underiin I, and f € hom(i,j).
The restriction (S - f) of S along f is the cosieve under j given by

S-f={a:j> k|keob(l), aof €S}

18 /24



Computing matching objects

Final case My, (i n t+1) requires some machinery.

Definition

Let S be a cosieve underiin I, and f € hom(i,j).
The restriction (S - f) of S along f is the cosieve under j given by

S-f={a:j> k|keob(l), aof €S}

Definition
A countable and locally finite inverse I is well oriented if for all f € hom(x, y) and
g’ h G hom(y’ Z)I

g<h = gof<hof.

Examples: A,, O, (Q42..)
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Partial matching object as functor

In a well oriented inverse category, the restriction of a linear cosieve S;p, ; along any
f € hom(i,j) is a linear cosieve.

f
Sing —> S f=Sjwy

Thus linear cosieves organize into a full subcategory LCoSv(I) of CoSv(T).
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Partial matching object as functor

In a well oriented inverse category, the restriction of a linear cosieve S;p, ; along any
f € hom(i,j) is a linear cosieve.

f
Sint —> S f=Sjwyr

Thus linear cosieves organize into a full subcategory LCoSv(T) of CoSv(T).

View partial matching objects as the object part of a weak functorial action LCoSv(Z) — Con,
and simultaneously define the action on morphisms

M. inty (F) 2 Sub(My ity > M (ipt) )

(definition omitted in this talk)

v

19/24



Constructing diagrams in internal CwFs

Now we can define
Ma,(i,ht+1) = Mp (iht) > An [Mn,(i,h,t) (f)]

where
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Constructing diagrams in internal CwFs

Now we can define
M (iht+1) = Mp (int) > An [/V'n,(i.h,t) (f)]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

> l\7ln,(,-,h,t) (t) is a substitution from M (ipt) to My in¢) 2
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Constructing diagrams in internal CwFs

Now we can define
M, (i t41) 7= Ma (ine) > An [ Mo (ine) (D]
where

> Ay is constructed earlier (since h < i) by another component of the mutually recursive
definition

> Apis an open term of type V in context M, (p s |hom (h.h—1)|)
> t € hom(i, h) is the morphism for which idx(t) =t

> My (ine) (F) is a substitution from My (o) t0 My (ih.1) ¢

Let 7 be well oriented, S;+ be a linear sieve, f € hom(i,j) and j < h. Then

Sint - f = Sjj—1,]hom(jj-1)]|-
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Constructing diagrams in internal CwFs

Summary:

» Have SCT: N — Con.
When I = Aip, gives the components of semisimplicial types in the internal CwF.
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Constructing diagrams in internal CwFs

Summary:

» Have SCT: N — Con.
When I = Aip, gives the components of semisimplicial types in the internal CwF.

> Goes via a large mutually recursive definition, with all components very closely
intertwined.
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Constructing diagrams in internal CwFs

Elided in this talk:

> Functoriality and coherence witnesses for M and m.
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Constructing diagrams in internal CwFs

Elided in this talk:
> Functoriality and coherence witnesses for M and M.

> An extra well definedness proof: equivalent shapes of linear cosieves
(i, h +1,0) ~ (i, h, [hom(i, h)|)
should give rise to equal partial matching contexts

Mn, (i.h+1,0) = Mn,(ih,lhom (i,h)|) -
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Constructing diagrams in internal CwFs

Elided in this talk:
> Functoriality and coherence witnesses for M and M.

> An extra well definedness proof: equivalent shapes of linear cosieves
(i, h +1,0) ~ (i, h, |hom(i, h)|)
should give rise to equal partial matching contexts
Mn, (i.h+1,0) = Mn,(ih,lhom (i,h)|) -

> Dealing with explicit weakenings of the internal CwF.
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Coda—Relating open problems

Define a type Syn encoding the syntax of HoTT, plus interpretation function
[-]: syn > u

sending syntax to their canonical interpretations (context expressions to nested X -types, type
expressions to type families, etc.)?

23/24



Coda—Relating open problems

Define a type Syn encoding the syntax of HoTT, plus interpretation function
[-]: syn > u

sending syntax to their canonical interpretations (context expressions to nested X -types, type
expressions to type families, etc.)?

Equivalently, find a notion of “model of type theory” such that
1. The syntax is initial, and
2. The “standard model” given by a universe type is an instance?
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Coda—Relating open problems

In particular, a positive answer would include the data of a morphism

[-]: congyn — U.
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Coda—Relating open problems

In particular, a positive answer would include the data of a morphism
[-]: congyn — U.

Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!
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Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!

If HoTT interprets itself, then semisimplicial types are definable in HOTT. I

(conjectured by Shulman)
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Coda—Relating open problems

In particular, a positive answer would include the data of a morphism
[-]: congyn — U.

Our construction gives a function SST: N — Con for any CwF, in particular for the syntax Syn.
= Just precompose with SST to get

[[]osSST: N— u!

If HoTT interprets itself, then semisimplicial types are definable in HOTT. I

(conjectured by Shulman)

Thanks!
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