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Abstract

This short expository note discusses abstractly the concept of semantic or “soft” types, to
make plain that they are in fact already ubiquitously used by mathematicians, and to cast
them as a general framework applicable to any logical system, including type theory itself.

1 Introduction

The notion of a “soft type” is prevalent in some formal proof circles [5, 6, 7, 8, 12], where it
arose out of the need to organize the complex hierarchies and ontologies of objects considered in
mathematical practice.

Consider the following example. In contrast to type theory, in set theory there is only one
logical type, namely the type of sets. However, in practice we distinguish particular sets according
to chosen properties. For instance, in ZFC we may make the following definitions:

Soft type First-order definition

A set n is a natural number iff n ∈ ω, where ω is the first nonzero limit ordinal.
A set x is an ordered triple iff x is of the form (a, (b, c)), where we use the Kura-

towski definition of the ordered pair.
An ordered triple (G, ·, e) is a
group

iff (· : G×G→ G) ∧ (associativity of ·) ∧ . . . .

A group (G, ·, e) is abelian iff ∀g, h ∈ G (g · h = h · g).

In the definitions above, n, x, (G, ·, e) etc. are all sets, but if they satisfy their defining properties
we consider them instances of a particular kind of set. These “kinds” are what we refer to as soft
types.

Idea. A soft type T in a mathematical/logical system is a classification given to objects of the
system that satisfy the defining property of T , which is formulated as a predicate in the logic of
the system. T may be viewed as a collection of particular kinds of objects, or as a label applied to
such objects.

We stress that, as opposed to types in type theory, soft types are not built into the underlying
logical formalism of the system. Instead they essentially correspond to logical predicates, which
may or may not hold for an object of the system. In particular, a term is allowed to be a member
of (or, is allowed to be assigned) multiple soft types, a case which frequently arises in practice.

Observe that while we have introduced soft types in the context of set theory and first-order
logic, there is nothing limiting us to any particular logic or theory. We may equally well formulate
soft types for theories of higher-order predicate logic, simple type theory, or even dependent type
theory.

We end this section apophatically and say what soft types, as described here, are not :
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• They do not have any relation to “weak typing” as the term is applied to programming
languages.

• Though much of the spirit is the same, a soft type is not strictly a type in the sense of
the term as used in type theory. In particular, as we have already seen, the strict formal
properties of type-theoretic types need not apply to soft types.

As searching online for “soft type” mostly turns up results along the lines of the first point
above, I propose we also call soft types semantic types1.

2 Why semantic types?

Semantic types are already handled implicitly and ubiquitously by working mathematicians, who
recognize when an object of study X is simultaneously an instance of multiple types T1, T2, . . . , and
freely switch between viewing X now as a Ti-instance, then as a Tj-instance, and working with it
accordingly. We simply introduce an abstract framework for formalizing what happens in practice.
In a sense, all we are doing is book-keeping, albeit of a common and important form, which is also
of particular help in making proof assistants more user-friendly for daily mathematical work.

Why not type theory, then? Dependent type theory already natively allows the creation of
types defined directly via logical predicates, since every predicate is a type via the Curry-Howard
correspondence. Indeed, type theory is both powerful and theoretically elegant, so while not
wishing to detract from its approach, we offer the following advantages of semantic types:

1. Power and flexibility — Semantic types are not bound to the Curry-Howard viewpoint, and
their formulation as a general framework may use any logic of choice. The type discipline
allows for more flexibility: terms may have multiple types, and there are as many ways to form
types as there are ways to form predicates. In a sufficiently powerful theory, one gets all the
usual types of type theory and possibly more, for example the well-founded recursion theorem
of ZFC gives us semantic types corresponding to inductive and more general recursive types.

2. Simplicity and naturalness — Constructions like subtyping and intersection types, which take
some work to define properly in type theory [1, 3, 10], are almost trivial in first-order logic
semantic type systems. From a formalization-centric point of view, dependent type theory is
often a disincentive for mathematicians—among other things, it takes time to learn to use,
proof terms can create some overhead, and its logic is not natively classical. By tailoring the
system to fit existing mathematical practice, first-order set-theoretic systems with semantic
typing may motivate greater adoption of proof assistants.

The distinction between the type-theoretic and semantic type approaches may be loosely com-
pared to that between strongly and weakly-typed programming languages. Once one learns to
use strong typing well, good things are guaranteed, at the cost of some flexibility and extra effort.
Weakly-typed languages may occasionally feel more “hacky”, with fewer nice theoretical properties,
but they allow one to jump in and get things done quickly and directly.

3 Semantic types in set theory

In traditional set-theoretic foundations of mathematics, the semantic types correspond to subclasses

T = {x | φ(x)}

of the universe of sets, for first-order predicates φ. These types can be very rich, encompassing
such constructions as subtypes, intersection types, dependent types, and inductive types. Yet, as
the following table illustrates, in many cases this rich system arises directly and naturally out of
simple properties of first-order logic. In the following table, let A = {x | φ(x)} and B = {x | ψ(x)}.

1In contrast with “syntactic type”, which are types that are part of the syntax of the underlying logic. I’m not
actually entirely happy with this terminology; other suggestions are welcome.
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Type construction Defining property Formulation as semantic types

Subtypes A < B t : B whenever t : A.
A < B if and only if
∀x (φ(x) −→ ψ(x)) holds.

Intersection types
A ∩B

t : A ∩B if and only if
t : A and t : B.

A ∩B = {x | φ(x) ∧ ψ(x)}.

Dependent types
P (x1 : X1, . . . , xn : Xn)

A type P which depends
on terms of type X1, . . . ,
Xn.

P = {x | φ(x;x1, . . . , xn)}, where
the defining predicate φ of P has
parameters xi ∈ Xi.

W -types
Well-founded inductive
types T

T =
⋃
{F (z) | z ∈ Z}, where Z is a

well-founded set and F : Z → V is
defined by well-founded recursion.

It is an illustrative exercise to show how to define the semantic type ListN of finite lists of
natural numbers.

Note that the the semantic type constructions of dependent and inductive types may be more
general than the versions common in dependent type theory. In particular, dependent semantic
types need not just be dependent functions or sums, and inductive semantic types may be defined
over well-founded sets Z that are not isomorphic to (N, <), and hence need not be countable.

4 Semantic types in type theory

Semantic types allow us to go beyond the type system of simple type theory (also known as higher-
order logic) and build dependent types on top. This is an approach described in [4] and used in
the Isabelle proof assistant [11] implementations of constructive type theory (described in Chapter
5 of [9]) and homotopy type theory [2].
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