Homotopy Type Theory in Isabelle

Joshua Chen

University of Nottingham
(prev. Innsbruck)

ITP'21

29 Jun 2021

Motivation

e Bring support for working with dependent types to the simply typed Isabelle
prover.
e Why?
o Update + improve on Isabelle/CTT [Pau20]
o Modern case study on implementing a fully featured object logic with all the
necessary infrastructure on top of a logical framework.

o Lay groundwork for exploring logical frameworks as testbeds for prototyping
type theories (c.f. Andromeda [Bau+21]; Isabelle more flexible with fewer
guarantees).

1/15

The Isabelle logical framework

¢ Base logic Isabelle/Pure:
rank-1 polymorphic simple type theory +
base type prop of judgments +
implication =, universal quantification /\ and equality =.

e LCF-style proof assistant: kernel enforces that only valid props are derivable from

a core set of axioms and inference rules.

o After setting up the logical rules, further infrastructure (typechecking, elaboration,
definitions, proof methods, ...) is implemented using existing logical framework
facilities, which all go through the kernel.

Embedding DTT into Isabelle/Pure

Intensional Martin-Lof type theory with N-many cumulative Russell universes.

Type judgment Universes
typedecl o typedecl 1vl
consts has_type :: <0 = 0 = prop> ("(2_:/ _)" 999) axiomatization

0 :: <lvl> and

S <lvl = 1vl> and

1t :: <lvl = vl = prop> (infix "<y" 900)
where

0_min: "0 <y S i" and

1t_S: "i <y S i" and

lt_trans: "i <y j = j <v k = 1 <y k"

axiomatization U :: <lvl = o> where
Ui_in_Uj: "i <y j = U i: U j" and
U_cumul: "A: Ui = 1<y j=A:U;j "

lemma Ui_in_USi:

"U i: U (s 1)

by (rule Ui_in_Uj, rule 1t_S)
lemma U_lift:

"Ar U i= AU (S 1)

by (erule U_cumul, rule 1t_S)

Embedding DTT into Isabelle/Pure

Type rule examples

axiomatization where
PiF: "[A: U i; Ax. x: A = B x: U i] = [ix: A. B x: U i" and

PiI: "[A: U i; Ax. x: A = b x: B x] = Ax: A. b x: [lx: A. B x" and
PiE: "[f: TIx: A. B x; a: A] = f “a: B a" and
beta: "[a: A; Ax. x: A= b x: B x] = (Ax: A. b x) a =b a" and
eta: "f: TIx: A. B x = Ax: A. f "x = f" and
Pi_cong: "[

Ax. x: A = B x = B' x;

A: U i;

Ax. x: A= B x: U j;

Ax. x: A = B' x:
] = Tx: A. B x =

Tix: A. B' x" and

lam_cong: "[Ax. x: A= b x = ¢ x; A: U i] = Ax: A. b x = Ax: A. ¢ X

axiomatization where

SigF: "[A: U i; Ax. x: A= B x: U i] = 3x: A. B x: U i" and
SigI: "[Ax. x: A = B x: U i; a: A; b: B a] = <a, b>: 3x: A. B x" and

Sige: "[
p: ix: A. B x;
A: U i;
Ax. x : A= B x: i
Ap. p: 3Ix: A. B x C p: U Kk;
Ax y. [x: A; y: B x] = f x y: C<x, y>
] = sigInd A (fn x. B x) (fn p. C p) f p: C p" and

J

Sig_comp: "[
a: A;
b: B a;
Ax. x: A= B x: U i;
Ap. p: Ix: A. B x = C p: U i;
Ax y. [x: A; y: B x] = f x y: C<x, y>
] = sigInd A (fn x. B x) (fn p. C p) f <a, b> = f a b" and

Embedding DTT into Isabelle/Pure

Note:

e Contexts are encoded as premises.
I'HA: U I'z: A-b: B
L' Xa: A).b: II(z: A). B
e Judgmental equality is shallowly embedded using Isabelle/Pure equality.

117 PiI: "[A: U i; Ax. x: A = b x: B x] = Ax: A. b x: [lx: A. B x"

beta: "[a: A; Ax. x: A= b x: B x] = (Ax: A. b x) "a = b a"

e Type families and function arguments to type eliminators are meta-functions.

sigE: "[
p: Ix: A. B x;
A: U i;
Ax. x : A= B x: U j;
Ap. p: Ex: AL BXx =Cp
Ax y. [x: A; y: B x] = f x
] = sigInd A (fn x. B x) (f

]
: U k;

Short demo

Some Terminology

e Theorem collection: Data slot for storing props that have been certified by the
kernel.

e Schematic variables: Metavariables. Prefixed with “7".

e Resolution: Given a goal P and an inference rule
N Z Ri(&) = - Ra(E) = Q(&),

abstract P over Z, unify with Q(Z), and return the state with the new subgoals
A Z. R;(Z) replacing P.

7/15

Type Checking

Isabelle’s higher-order unification and resolution tactic + its simplifier can be used to
implement a type checker.

We maintain theorem collections for type inference rules and known type judgments:
[form], [intr], [elim], [comp], [typel.

8/15

Type Checking

To solve (t: 7T") where the head of ¢ is not schematic, we

® Unify the goal with some unconditional type judgment s: S in [typel. If successful, we're done. Else,

® Resolve with a rule from [form], [intr], or [elim]. This is syntax-directed since the head of ¢ is a
constant. If successful, start from the top with each new subgoal in turn. Else,

® (Currently unimplemented) Attempt unfolding the definition of the head of ¢ and start from the top. Else,

® Resolve with a unifying rule from [typel. This time, conditional rules are allowed. This is no longer
necessarily syntax-directed since the user is allowed to add arbitrary rules to [type], but backtracking is
performed. If successful, start from the top. Else,

® Resolve with the change of direction rule Aa A. a: A= A= B = a: B, and on the two newly arising
subgoals run the typechecker and the simplifier, respectively.

Typechecker also hooked in to the simplifier to discharge ancillary typing conditions.

9/15

Implicits and Elaboration

e Implicits are metavariables that are to be elaborated.
e They appear everywhere, so in general proofs are always in “schematic mode”.

e [sabelle's default goal statements don't support these very well—even the
schematic_goal command converts metavariables to fixed free variables in
crucial cases!

¢ Had to define modified goal statement commands (Theorem, Lemma etc.) to keep
metavariables across subgoals, and also to hook the typechecker in to elaborate
proof premises. (Example: horiz_pathcomp)

10/15

Definitions

e Currently, rudimentary “definitional package”: basically a modified version of the
goal commands.

¢ No syntactic support for pattern matching or recursion yet (such cases are defined
by constructing the terms manually).

e |Implicit arguments denoted by {}. A syntax phase translation converts these to
schematic variables in goal statements. (Example: idtoeqv)

11/15

Induction

Some work needed to integrate the propositions-as-types paradigm with the Isar
structured proof style.

Example: Natural numbers

n:N ¢o:C0) k:N, c: C(k)F f(k,c): C(suc(k))
NatInd(C, co, f,n): C(n)

NatE

Induction

Lemma
assumes “n: N” and “2 | n”
shows “2 | suc(suc(n))”

By induction on n, but naive application of NatE results in inductive goal
2 | suc(suc(k)) = 2 | suc(suc(suc(k)))

Want to induct on "2 | n = 2 | suc(suc(n))" instead!

13/15

Induction

Push context assumptions involving n into the goal type:

[T o [2] suc(suc(n))]

and then apply NatE (pull them out again after).

General elim tactic does this. Equality induction eq is a special case.

14/15

Next steps and Future possibilities

e Improve the type checker: better normalization and definitional unfolding
(currently still needs a lot of manual tweaking to make computations go through)

e Universe level inference

e Definition infrastructure: more convenient pattern matching, inductive type
definitions, HITs...

Might need to revisit some earlier design decisions (untyped lIsabelle/Pure equality,
Russell universes...)

Prototype two-level type theory?

15/15

References |

[Bau+21] Andrej Bauer et al. Andromeda 2. 2021. URL: https://www.andromeda-prover.org/ (visited
on 28/06/2021).

[Pau20] Lawrence C. Paulson. Constructive Type Theory. 2020. Chap. 5, pp. 63-86. URL:
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/logics.pdf.

https://www.andromeda-prover.org/
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/logics.pdf

	Appendix
	References

