
Homotopy Type Theory in Isabelle
Joshua Chen
University of Nottingham
(prev. Innsbruck)

ITP ’21
29 Jun 2021

Motivation

• Bring support for working with dependent types to the simply typed Isabelle
prover.

• Why?
◦ Update + improve on Isabelle/CTT [Pau20]

◦ Modern case study on implementing a fully featured object logic with all the
necessary infrastructure on top of a logical framework.

◦ Lay groundwork for exploring logical frameworks as testbeds for prototyping
type theories (c.f. Andromeda [Bau+21]; Isabelle more flexible with fewer
guarantees).

1/15

The Isabelle logical framework

• Base logic Isabelle/Pure:
rank-1 polymorphic simple type theory +

base type prop of judgments +
implication ⇒, universal quantification

∧
and equality ≡.

• LCF-style proof assistant: kernel enforces that only valid props are derivable from
a core set of axioms and inference rules.

• After setting up the logical rules, further infrastructure (typechecking, elaboration,
definitions, proof methods, …) is implemented using existing logical framework
facilities, which all go through the kernel.

2/15

Embedding DTT into Isabelle/Pure

Intensional Martin-Löf type theory with N-many cumulative Russell universes.

Type judgment Universes

3/15

Embedding DTT into Isabelle/Pure

Type rule examples

…

4/15

Embedding DTT into Isabelle/Pure

Note:

• Contexts are encoded as premises.
Γ ⊢ A : Ui Γ, x : A ⊢ b : B

ΠI
Γ ⊢ λ(x : A). b : Π(x : A). B

• Judgmental equality is shallowly embedded using Isabelle/Pure equality.

• Type families and function arguments to type eliminators are meta-functions.

5/15

Short demo

6/15

Some Terminology

• Theorem collection: Data slot for storing props that have been certified by the
kernel.

• Schematic variables: Metavariables. Prefixed with “?”.
• Resolution: Given a goal P and an inference rule∧

x⃗. R1(x⃗) ⇒ · · ·Rn(x⃗) ⇒ Q(x⃗),

abstract P over x⃗, unify with Q(x⃗), and return the state with the new subgoals∧
x⃗. Ri(x⃗) replacing P .

7/15

Type Checking

Isabelle’s higher-order unification and resolution tactic + its simplifier can be used to
implement a type checker.

We maintain theorem collections for type inference rules and known type judgments:
[form], [intr], [elim], [comp], [type].

8/15

Type Checking

To solve (t : ?T) where the head of t is not schematic, we
• Unify the goal with some unconditional type judgment s : S in [type]. If successful, we’re done. Else,
• Resolve with a rule from [form], [intr], or [elim]. This is syntax-directed since the head of t is a

constant. If successful, start from the top with each new subgoal in turn. Else,
• (Currently unimplemented) Attempt unfolding the definition of the head of t and start from the top. Else,
• Resolve with a unifying rule from [type]. This time, conditional rules are allowed. This is no longer

necessarily syntax-directed since the user is allowed to add arbitrary rules to [type], but backtracking is
performed. If successful, start from the top. Else,

• Resolve with the change of direction rule
∧

aA. a : A ⇒ A ≡ B ⇒ a : B, and on the two newly arising
subgoals run the typechecker and the simplifier, respectively.

Typechecker also hooked in to the simplifier to discharge ancillary typing conditions.

9/15

Implicits and Elaboration

• Implicits are metavariables that are to be elaborated.
• They appear everywhere, so in general proofs are always in “schematic mode”.
• Isabelle’s default goal statements don’t support these very well—even the

schematic_goal command converts metavariables to fixed free variables in
crucial cases!

• Had to define modified goal statement commands (Theorem, Lemma etc.) to keep
metavariables across subgoals, and also to hook the typechecker in to elaborate
proof premises. (Example: horiz_pathcomp)

10/15

Definitions

• Currently, rudimentary “definitional package”: basically a modified version of the
goal commands.

• No syntactic support for pattern matching or recursion yet (such cases are defined
by constructing the terms manually).

• Implicit arguments denoted by {}. A syntax phase translation converts these to
schematic variables in goal statements. (Example: idtoeqv)

11/15

Induction

Some work needed to integrate the propositions-as-types paradigm with the Isar
structured proof style.

Example: Natural numbers

n : N c0 : C(0) k : N, c : C(k) ⊢ f(k, c) : C(suc(k))
NatE

NatInd(C, c0, f, n) : C(n)

12/15

Induction

Lemma
assumes “n : N” and “2 | n”
shows “2 | suc(suc(n))”

By induction on n, but naive application of NatE results in inductive goal

2 | suc(suc(k)) =⇒ 2 | suc(suc(suc(k)))

Want to induct on “2 | n =⇒ 2 | suc(suc(n))” instead!

13/15

Induction

Push context assumptions involving n into the goal type:∏
r : 2|n

[
2 | suc(suc(n))

]
and then apply NatE (pull them out again after).

General elim tactic does this. Equality induction eq is a special case.

14/15

Next steps and Future possibilities

• Improve the type checker: better normalization and definitional unfolding
(currently still needs a lot of manual tweaking to make computations go through)

• Universe level inference
• Definition infrastructure: more convenient pattern matching, inductive type

definitions, HITs…

Might need to revisit some earlier design decisions (untyped Isabelle/Pure equality,
Russell universes…)
Prototype two-level type theory?

15/15

References I

[Bau+21] Andrej Bauer et al. Andromeda 2. 2021. url: https://www.andromeda-prover.org/ (visited
on 28/06/2021).

[Pau20] Lawrence C. Paulson. Constructive Type Theory. 2020. Chap. 5, pp. 63–86. url:
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/logics.pdf.

https://www.andromeda-prover.org/
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/logics.pdf

	Appendix
	References

