
A pre-introduction to homotopy type theory

Joshua Chen

Graduate Seminar in Logic, Universität Bonn, Summer 2017

Abstract

This was a set of notes prepared for the graduate seminar on type theory at the Uni-
versity of Bonn in the summer of 2017. It is a pre-introduction to homotopy type theory
in that everything discussed here is already present in standard Martin-Löf type theory;
however our viewpoint is towards a more homotopical interpretation of the theory. Most
of the material loosely follows the presentation given in Chapters 1 and 2 of the Homotopy
Type Theory (HoTT) book.

1 Preliminaries

1.1 Type universes

I will often write things like A : U (“A is a type”) or B : A → U (“B is a dependent type/type
family”). Here U denotes a type whose objects are themselves types—but to avoid Girard’s
paradox, U only contains those types that we need, and not all types.

More formally one defines a hierarchy of type universes

U0,U1,U2, . . .

such that Ui : Ui+1 and A : Ui =⇒ A : Ui+1. We may then pick a suitable level containing all
the types we want to work with, and call this level U .

1.2 Dependent types

Definition 1.1. A dependent type aka type family is a function B : A→ U that depends on
objects of some other type. That is, B(a) : U for all a : A.

Examples:

• Fin: N→ U , where Fin(n) is the finite type with n objects 0n, 1n, . . . , (n− 1)n.

• The constant type family at a type B

λ(x : A).B : A→ U

1

2 Π-types

The Π-type aka dependent function or dependent product type is a generalization of
the function type A → B, where the type of the returned value can vary depending on the
argument.

Its governing rules are:

Formation. If A : U and B : A→ U then we can form the type∏
x:A

B(x) : U

(to be read as “take argument x : A and return object of type B(x)”.)

Introduction. Let A : U and B : A → U . If assuming a variable x : A we can obtain
b : B(x) where x is potentially free in b, then

λ(x : A).b :
∏
x:A

B(x).

I will often just provide an expression b involving x and write f(x) :≡ b.
Dependent functions are used in the obvious way:

Elimination. If f :
∏

x:AB(x) and a : A then fa : B(a).

Computation. (λ(x : A).b)a ≡ b[a/x] (β-reduction).

Examples:

• f :
∏

n:N Fin(n+ 1) where f(n) :≡ 0n+1 : Fin(n+ 1).

• Polymorphic functions are dependent functions that take types as some of their argu-
ments, and act on objects of those types (or types constructed from those types).

e.g. The polymorphic identity function

id :
∏
A:U

(A→ A)

defined as id :≡ λ(A : U).λ(x : A).x.

e.g.

swap :
∏
A:U

∏
B:U

∏
C:U

((A→ B → C)→ (B → A→ C))

switches the arguments of a two-argument function:

swap :≡ λ(A : U).λ(B : U).λ(C : U).λ(f : A→ B → C).λ(b : B).λ(a : A).f(a)(b).

Note that if B is a constant type family then
∏

x:AB(x) ≡ A→ B.

2

3 Σ-types

The Σ-type aka dependent pair or dependent sum type generalizes the pair type—the
type of the second component can depend on the first component.

Formation. If A : U and B : A→ U then∑
x:A

B(x) : U

is a type.

Introduction. If a : A and b : B(a) then (a, b) :
∑

x:AB(x).

We present the so-called “positive” form of the elimination and computation rules, which
has the following statement:

Elimination & computation. Let

C :
(∑

x:A

B(x)
)
→ U

be a type dependent on the Σ-type. Given

g :
∏
x:A

∏
y:B(x)

C((x, y)),

there is a function
f :

∏
p:
∑

x:A B(x)

C(p)

satisfying f((x, y)) ≡ g(x)(y).

This expresses an induction principle: to prove that a predicate C holds for all objects
p of a Σ-type, it suffices to show that C holds for all objects (a, b) given by the constructor
(introduction rule).

Stated from another viewpoint, to define a dependent function f on a Σ-type it suffices to
define f on the objects (a, b). This is analogous to the case of N, where to define a function
f on N it suffices to define f on the constructors 0 and succ(n) for n : N. We’ll see induction
again especially when we talk about the equality type.

From the induction principle we can show that all p :
∑

x:AB(x) are of the form (a, b). We
can also derive the more familiar “negative” form of the elimination rules, which say that given
p :
∑

x:AB(x) we can obtain their first and second components π1(p) : A and π2(p) : B(π1(p)).
Define

π1 :
(∑

x:A

B(x)
)
→ A

by

g :
∏
x:A

∏
y:B(x)

A

where g :≡ λ(x : A).λ(y : B(x)).x. The case for π2 is analogous.
Note that if B is a constant type family then

∑
x:AB(x) ≡ A×B.

3

4 Semantic interpretation of Π/Σ-types

The expression

f :
∏
x:A

B(x)

has an interpretation in (intuitionistic) predicate logic: for every a : A it gives an object fa :
B(a), i.e. it tells us that B(a) is inhabited. Hence Π corresponds to the ∀-quantifier: for all
x : A, B(x) is provable.

Similarly every

p :
∑
x:A

B(x)

is of the form (a, b) where a : A and b : B(a), hence the existence of such p tells us that there
exists a : A for which B(a) is provable. This corresponds to the ∃-quantifier.

We can also think of
∑

x:AB(x) as the type of objects x : A for which property B holds.

5 Identity types

The equality aka identity type is governed by the following rules.

Formation. Given A : U and a, b : A we may form the type (a =A b) : U .

Introduction. If a : A then refla : a =A a is the reflexive identity for a.

The elimination-computation rule is known as path induction, due to the homotopy type
theory viewpoint of equalities as paths (to be elaborated on later).

Path induction. Let
C :

∏
x,y:A

(x =A y → U).

Given
c :
∏
x:A

C(x, x, reflx),

there is a function
JC,c :

∏
x,y:A

∏
p:x=Ay

C(x, y, p)

satisfying JC,c(x, x, reflx) ≡ c(x).

It is perhaps helpful to compare the above statement with the following elimination rule
seen in a previous talk (refer Section 4.10, Type Theory & Functional Programming, Simon
Thompson)—given x, y : A we have the derivation rule

p : x =A y c(x) : C(x, x, reflx)
JC,c(x, y, p) : C(x, y, p)

Path induction says that to prove that C(x, y, p) is inhabited for any p : x =A y it suffices
to prove it for the case where y ≡ x and p is reflx : x =A x.

4

Lemma 5.1 (Equality is symmetric, aka paths can be reversed). Let A : U and x, y : A. There
is a function

·−1 : (x =A y)→ (y =A x)

such that refl−1x ≡ reflx for all x : A.

Proof. We show that ∏
x,y:A

((x =A y)→ (y =A x))

is inhabited by a function with the required property. Let C :
∏

x,y:A(x =A y → U) be defined
by

C(x, y, p) :≡ (y =A x),

and let
c :≡ λ(x : A).reflx :

∏
x:A

C(x, x, reflx).

By path induction we have

JC,c :
∏
x,y:A

∏
p:x=Ay

C(x, y, p) ≡
∏
x,y:A

((x =A y)→ (y =A x)).

For given x, y : A define
·−1 :≡ JC,c(x, y),

then refl−1x ≡ JC,c(x, x, reflx) ≡ c(x) ≡ reflx.

Lemma 5.2 (Equality is transitive, aka paths can be composed). Let A : U and x, y : A. There
is a function

− �− : (x =A y)→ (y =A z)→ (x =A z)

such that reflx � reflx ≡ reflx for all x : A.

Note that we concatenate paths from left to right.

Proof. For every p : x =A y we want a function of type

C(x, y, p) :≡
∏
z:A

∏
q:y=Az

(x =A z).

By induction it suffices to assume y ≡ x and p ≡ reflx, and show that there is a function

c :
∏
x:A

C(x, x, reflx) ≡
∏
x:A

∏
z:A

∏
q:x=Az

(x =A z).

We might think to take c to be the identity function on x =A z, but we’ll do something else. (∗)
Let

E :
∏
x,z:A

(x =A z → U)

5

be given by E(x, z, q) :≡ x =A z. Then E(x, x, reflx) ≡ x =A x, and we have

e :
∏
x:A

E(x, x, reflx)

defined by e(x) :≡ reflx. By induction on q : x =A z we have

c :≡ JE,e :
∏
x:A

∏
z:A

∏
q:x=Az

(x =A z)

as required, and thus also

JC,c :
∏
x,y:A

∏
p:x=Ay

∏
z:A

∏
q:y=Az

(x =A z).

Note that this last type is just

∏
x,y:A

(
(x =A y)→

∏
z:A

(
(y =A z)→ (x =A z)

))
.

We can check that the function thus defined satisfies reflx � reflx ≡ reflx.

Remark. In the proof above we used a double induction on both p : x =A y and q : y =A z
to prove the existence of a function with the property reflx � reflx ≡ reflx. As observed at (∗)
we could have simply used induction on p, but this would instead give us a function satisfying
refly � q ≡ q for all q : y =A z. Similarly using induction only on q would have yielded a function
satisfying p � refly ≡ p for all p : x =A y.

Path reversal and concatenation behave as expected:

Lemma 5.3. Let A : U , x, y, z, w : A and p : x =A y, q : y =A z, r : z =A w. Then

i) p = reflx � p and p = p � refly.

ii) p � p−1 = reflx and p−1 � p = refly.

iii) (p−1)−1 = p.

iv) p � (q � r) = (p � q) � r.

Proofs omitted, again they all use path induction.
It is important to note that the lemma above gives us equalities (=) between equality

objects within the type theory, as opposed to definitional equivalences (≡) on the level of
the metatheory.

6 Type theory and homotopy theory

Here we make more explicit the connection between type theory and homotopy theory hinted
at in the previous section. The basic idea is:

6

Type theory Homotopy theory
A : U A is a topological space.
a : A a ∈ A is a point in A.

p : a =A b p is a path between a and b in A.

But it goes deeper. In topology, paths between points a, b can have (endpoint-preserving)
homotopies between them. Homotopies are simply higher-dimensional paths, so we can form
homotopies between homotopies, homotopies between homotopies between homotopies. . .

In type theory, identities p, q : a =A b can potentially themselves be identified, forming
higher identities p : p =a=Ab q, P : p =p=q q, etc.

The structure in both settings is that of a weak∞-groupoid—a category having morphisms
between morphisms (2-morphisms), morphisms between morphisms between morphisms (3-
morphisms). . . , in general, (k+1)-morphisms between k-morphisms for all k ∈ N. These satisfy
certain laws, e.g. at every level k the k-morphisms satisfy invertibility, left and right unit laws,
associativity etc., up to (k + 1)-morphisms.

Comparing the statement of Lemma 5.3 with the following basic result from homotopy theory
helps make some of this equivalent structure clear:

Lemma 6.1 (Lemma 5.3, topological translation). Let A be a topological space, x, y, z, w ∈ A
and p, q, r paths from x to y, y to z and z to w respectively. Then

i) p ∼ idx � p and p ∼ p � idy.

ii) p � p−1 ∼ idx and p−1 � p ∼ idy.

iii) (p−1)−1 ∼ p.

iv) p � (q � r) ∼ (p � q) � r.

where ∼ means “is homotopic to”, idx is the constant path at x and p−1 is the inverse path to
p.

In both versions of the lemma, the identifications are all up to higher-level morphisms—
equalities between equalities in the type theory version, and homotopies in the topological
version. This explains the HoTT convention of calling identity objects “paths”.

Lemma 6.2 (Functions respect equality, aka they preserve paths). Let A,B : U , f : A → B
and x, y : A. There is a function

apf : (x =A y)→ (fx =B fy)

satisfying apf (reflx) ≡ reflfx for all x : A.

Proof. Let C(x, y, p) :≡ (fx =B fy). As usual it suffices to assume y ≡ x and p ≡ reflx, and
exhibit

c :
∏
x:A

(fx =B fx).

But c(x) :≡ reflfx is such a function, and the result follows by induction.

7

It is instructive to consider the above lemma topologically. We call apf the application of f
to the path.

There is much more to say here about connections to homotopy theory, particularly with
regard to the notion of transport and the topological interpretation of type families as fibrations
(refer Section 2.3 of the HoTT Book).

7 Homotopies and equivalences

In this section we consider notions of “equality”—other than the identity type—for functions
and types.

Definition 7.1. Let P : A→ U and f, g :
∏

x:A P (x). A homotopy from f to g is a dependent
function of the type

f ∼ g :≡
∏
x:A

(fx = gx).

Motivation: two functions f, g should be considered “equal” if their values agree on their
domain.

Note that this is different from saying f = g. Using path induction one can show that

(f = g)→ (f ∼ g)

is inhabited. With the univalence axiom (defined later) we can obtain the reverse implication,
which will make the types f = g and f ∼ g equivalent.

Lemma 7.2. Homotopy is an equivalence relation on each dependent function type. That is,
for A : U , P : A→ U the following types are inhabited:∏

f :
∏

x:A P (x)

(f ∼ f)

∏
f,g:

∏
x:A P (x)

((f ∼ g)→ (g ∼ f))

∏
f,g,h:

∏
x:A P (x)

((f ∼ g)→ (g ∼ h)→ (f ∼ h))

(Proof omitted.)
We might wish to call two types A,B “equal” if there are functions f : A→ B and g : B → A

such that their compositions are pointwise equal to the identity, i.e. if f ◦g ∼ idB and g◦f ∼ idA.

Definition 7.3. Let A,B : U and f : A → B. A quasi-inverse of f is an inhabitant of the
type

qinv(f) :≡
∑

g : B→A

(
(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

)
.

That is, a quasi-inverse of f is a triple (g,H,K) consisting of g : B → A and homotopies
H : f ◦ g ∼ idB and K : g ◦ f ∼ idA.

Topologically one would expect to call such f, g “homotopy equivalences”. However as
quasi-inverses alone do not suffice to define univalence in a consistent way, we instead make the
following definition.

8

Definition 7.4. Let A,B : U and f : A→ B. Define the type

isequiv(f) :≡
(∑

g : B→A

(f ◦ g ∼ idB)
)
×
(∑

h : B→A

(h ◦ f ∼ idA)
)
.

In words, f is an equivalence if it has right and left homotopy inverses g, h.
In homotopy theory, given such a pair g, h one can show that g (resp. h) is also a left (resp.

right) homotopy inverse, i.e. the existence of a priori distinct left and right inverses implies the
existence of a two-sided inverse. In HoTT we have the analogous result:

Lemma 7.5. For every f : A → B there is a function qinv(f) → isequiv(f) and a function
isequiv(f)→ qinv(f).

Proof. Clearly the function sending a quasi-inverse (g,H,K) to (g,H, g,K) is an inhabitant of
qinv(f)→ isequiv(f).

Suppose (g,H, h,K) : isequiv(f). That is, we have g, h : B → A, H : f ◦ g ∼ idB and
K : h ◦ f ∼ idA. Let γ : g ∼ h be the homotopy given by the path composition

g ≡ idA ◦ g
K−1◦g∼ h ◦ f ◦ g h◦H∼ h ◦ idB ≡ h,

i.e.
γ(x) :≡ (K−1gx) � (aphHx) : gx = hx

where K−1 : idA ∼ h◦f is the inverse homotopy to K (refer Lemma 7.2). Define K ′ : g◦f ∼ idA

by
K ′ :≡ (γfx) � (Kx).

Then (g,H,K ′) is a quasi-inverse of f .

Definition 7.6. Let A,B : U . An equivalence from A to B is a function f : A → B together
with a proof of isequiv(f). We write

A ' B :≡
∑

f : A→B

isequiv(f)

and say that A and B are equivalent types if A ' B is inhabited.

Lemma 7.5 says that to prove f : A → B is an equivalence it is necessary and sufficient to
show that it has a quasi-inverse.

Type equivalence is an equivalence relation on U , that is:

Lemma 7.7. For all A,B,C : U ,

i) A ' A via the identity function idA.

ii) For any f : A ' B there is an equivalence f−1 : B ' A.

iii) If f : A ' B and g : B ' C then g ◦ f : A ' C.

(Proof omitted.)

9

	Preliminaries
	Type universes
	Dependent types

	Pi-types
	Sigma-types
	Semantic interpretation of Pi/Sigma-types
	Identity types
	Type theory and homotopy theory
	Homotopies and equivalences

