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Set Theory for Formal Proof



History

Used from the beginning: Metamath, Mizar.

In Isabelle: ZF, HOLZF.

Large math libraries formalized.
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More recently

Calls for a renaissance of set theory in formal proof.

Isabelle/Mizar [Kaliszyk, Pąk ’18]: Mizar semantics in Isabelle. First ~100 MML
articles verified.

auto2 [Zhan ’17]: formalization of the fundamental group in untyped ZFC from
scratch.
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Foundations

Which set theory?

• ZFC standard (Isabelle/ZF, Metamath)

• But size issues!
=⇒ Tarski-Grothendieck (Mizar, Metamath)

Which logic?
• FOL standard (Mizar, Metamath, Isabelle/ZF)

• But axiom schemas!
=⇒ HOL
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Foundations

Higher-order Tarski-Grothendieck (HOTG)
The axioms of Tarski-Grothendieck set theory on top of higher-order logic.

Isabelle/HOL snippet:

empty_axiom: "¬(∃x. x ∈ {})" and

elem_induct_axiom: "(∀X. (∀x. x ∈ X ⟶ P x) ⟶ P X) ⟶ (∀X. P X)" and

Union_axiom: "∀X x. x ∈ ⋃X ⟷ (∃Y. Y ∈ X ∧ x ∈ Y)" and

Replacement_axiom: "∀X y. y ∈ Repl X F ⟷ (∃x. x ∈ X ∧ y = F x)" and

Has a model under reasonable assumptions [Brown, Pąk, Kaliszyk ’19].

Also the foundation of Chad Brown’s Egal theorem prover.
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Soft Types



Types & predicates

In type theory, types:
• encode properties,
• restrict scope,
• disambiguate terms.

In untyped formalisms, predicates do this.
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Predicates & types

Example: Predicates

∀G x y z.
(is_monoid G) ⟶ (x ∈ carrier G) ⟶ (y ∈ carrier G) ⟶ (z ∈ carrier G) ⟶
(x ∗ y = x ∗ z) ⟶ (x ∈ units G) ⟶ y = z

Abstracting such predicates as “soft types” improves structure and automation.

Example: Soft types

∀G: monoid. ∀x y z: element G. (x ∗ y = x ∗ z) ⟶ (x ∈ units G) ⟶ y = z
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Implementation

A generic layer on top of Isabelle/HOL.

Type constructions:
Base types Type P
Dependent functions (x: A) ⇒ B x
Type intersections A ¦ B
Type adjectives adj ⋅ type

Working on type elaboration, type derivation, and integrating type reasoning.
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Isabelle/Set



Isabelle/Set

The system
Based on classical higher-order logic and HOTG.
Strong and structured soft type system and automation.

Aims
Provide a simpler, modern base to import the MML.
Maintain Isabelle/ZF compatibility.
Formalize more stuff!

Current work
Type derivation
Structures
Set extensions
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Fin.
Thanks for listening!
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