Reedy fibrations

The first part of this explainer mostly follows (missing reference).

A brief word on Notation.

todo

Inverse categories

definition1Inverse category A binary relation $\prec$ may be placed on the collection of objects of any category $\mathcal C$ by defining $y \prec x$ if and only if there is an arrow $x \rightarrow y$ in $\mathcal C$. An inverse category $\mathcal I$ is one for which $\prec$ is well-founded.

definition2Degree/rank Given an inverse category $\mathcal I$, we can define the degree aka rank $\rho(x)$ of an object $x$ of $\mathcal I$ by well-founded recursion in the usual way: \[ \rho(x) \coloneqq \sup_{y \, \prec \, x} \big( \rho(y) + 1 \big). \] The rank $\rho(\mathcal I)$ of $\mathcal I$ itself is then \[ \rho(\mathcal I) \coloneqq \sup_{x \, \in \, \mathcal I} \big( \rho(x) + 1 \big). \]

Equivalently, an inverse category $\mathcal I$ is one for which there is an ordinal $\lambda$ together with a rank function $\rho \colon \mathrm{ob}(\mathcal I) \rightarrow \lambda$, such that any nonidentity arrow $f \colon x \rightarrow y$ strictly lowers degree—i.e. $\rho(y) < \rho(x)$. We may always assume that $\rho$ is of the form given in definition (2).

definition3Truncated inverse category For an inverse category $\mathcal I$ and $x \in \mathcal I$, the $x$-truncated category $\Ix$ is the full subcategory of $\mathcal I$ on objects $y \prec x$. We also use $\Iex$ to denote the full subcategory on $\Ix \cup \{x\}$, but do not bother to give it a name.

Diagrams on inverse categories

notation4 For a category $\mathcal C$ and $x \in \mathcal C$, let denote the full subcategory of without the object $\mathrm{1}_x \colon x \rightarrow x$. Note that for an inverse category $\mathcal I$ and $x \in \mathcal I$ there is the canonical “codomain” forgetful functor .

Suppose we have a category $\mathcal C$, an inverse category $\mathcal I$ and a diagram $A_{\prec x} \colon \mathcal{I}_{\prec x} \rightarrow \mathcal C$ on the truncated inverse category. By unfolding definitions, we can see that (the data of) extensions of $A_{\prec x}$ to a diagram \[ A_{\preceq x} \colon \Iex \rightarrow \mathcal C \] are equivalently cones over which are equivalently maps into provided this limit exists.

definition5Matching object Suppose we have a category $\mathcal C$, inverse category $\mathcal I$ and diagram $A \colon \mathcal J \rightarrow \mathcal C$ where $\mathcal J \subseteq \mathcal I$ is a subcategory containing $\Ix$. The matching object $M_xA$ (of $A$, on “level” $x$) is the limit if it exists.

The preceding discussion then says that if the $x$-matching object for $A_{\prec x}$ exists, we can extend $A_{\prec x}$ to $x$ by simply giving an object $A_x$ and a map $A_x \rightarrow M_xA$ in $\mathcal I$.

Now let us consider extensions of maps between inverse diagrams. Suppose that $A_{\preceq x},\ B_{\preceq x} \colon \Iex \rightarrow \mathcal C$ have $x$-matching objects $M_xA,\ M_xB$, and that $f_{\prec x} \colon A_{\prec x} \rightarrow B_{\prec x}$ is a natural transformation restricted to the respective $x$-truncations. Then we can again check that extensions of $f_{\prec x}$ to maps \[ f_{\preceq x} \colon A_{\preceq x} \rightarrow B_{\preceq x} \] are equivalently lids of the square (where the walls and base are the evident arrows), which are equivalently arrows

labeled6 \[ A_x \xrightarrow{f_x} M_xA \times_{M_xB} B_x \]

such that commutes, provided that the pullback exists.

To summarize: if an inverse diagram $A \colon \mathcal{C}^{\mathcal I}$ has all matching objects, then it has a simple and uniform recursive description in terms of maps into $M_xA$ for all $x \in \mathcal I$ (note that $M_xA$ is always terminal for $\prec$-minimal $x$). Similarly, maps between inverse diagrams $A$, $B$ with all matching objects also have a uniform description in terms of maps in the sense of (6), assuming the pullback exists in $\mathcal C$.

Part of the appeal of these properties is that they suggest the possibility of encoding, for fixed $\mathcal I$, the type of such $\mathcal I$-diagrams and maps between them (possibly subject to additional conditions). We’ll come back to discuss this idea shortly.

Recall the definition of a type-theoretic fibration category (missing reference). In particular, these are equipped with a terminal object and a class $\mathfrak F \subseteq \mathrm{mor}(\mathcal C)$ of fibrations (containing all terminal arrows and isomorphisms, closed under pullbacks, etc.) interpreting types-in-context.

definition7Reedy fibration Let $\mathcal C$ be a type theoretic fibration category and $\mathcal I$ an inverse category. A Reedy fibration $f \colon A \rightarrow B$ between diagrams $A,\ B \colon \mathcal{C}^{\mathcal I}$ is one where:

definition8Reedy fibrant diagram A Reedy fibrant diagram $A \colon \mathcal{C}^{\mathcal I}$ is one for which the terminal arrow is a Reedy fibration. Equivalently, it’s one with all matching objects and such that $A_x \rightarrow M_xA$ is a fibration for all $x$. Note that the terminal diagram is itself Reedy fibrant.

remark9 The extra fibrancy requirement on the map into the pullback in definition (7) ensures that we can place a type theoretic fibration structure on the category of Reedy fibrant diagrams and Reedy fibrations, and thus construct new models of type theory in such diagrams.

Type-valued Reedy fibrant diagrams

Now fix an inverse category $\mathcal I$ and ask for $\mathcal I$-diagrams in $\Type$, i.e. presheaves $A \colon \Type^\mathcal{I}$ valued in the category of types and functions of a type theory with $\Pi$, strong $\Sigma$, and unit types.

At such a level of generality, it’s not yet known how to perform such constructions type-theoretically, or indeed, if it’s even possible. Certainly there’s no hope if we’re asking for strict diagrams, so we should look instead for the correct notion “up to homotopy”.

todo

References